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Abstract—This paper is concerned with an important special
case of the optimal stochastic decentralized control (SODC)
problem, where the objective is to design a static structurally
constrained controller for a stable stochastic system. This prob-
lem is non-convex and hard to solve in general. We show that if
either the measurement noise covariance or the input weighting
matrix is not too small, the problem is locally convex. Under
such circumstances, the design of a decentralized controller
with a bounded norm subject to an arbitrary sparsity pattern
is naturally a convex problem. In the case where the noise
covariance or input weighting matrix is not sufficiently large,
we modify the problem by a penalization term (acting as a
price of non-convexity) to convexify the problem, leading to a
near-global solution. We also study the problem of designing
a sparse controller using a regularization technique, where the
control structure is not pre-specified but penalized in the objective
function. Under some genericity assumptions, we prove that this
method is able to design a decentralized controller with any
arbitrary sparsity level. Although this paper is focused on stable
systems, the results can be generalized to unstable systems as
long as an initial stabilizing controller with a desirable structure
is known a priori.

I. INTRODUCTION

The area of optimal decentralized control (ODC) is of a high
importance for real-world systems, where the objective is to
control complex systems with many interacting subsystems.
As opposed to the centralized control problem, the decentral-
ized controller under design is required to be sparse and/or
have a certain sparsity pattern. The structural constraints of
the controller impose hard or soft penalties on the interactions
(information exchange) between different subsystems in order
to reduce the communication and computation complexity of
the control system. In the case where the controller is dis-
tributed over a geographical area, the term distributed control
is often used instead of decentralized control. It is well known
that if no structural constraints are imposed on the control
system, the resulting centralized controller can be efficiently
found using Riccati equations. However, the ODC problem is
intractable in the worst case since it amounts to an NP-hard
problem [1], [2]. Several methods have been developed to
solve ODC for special control systems, such as spatially dis-
tributed systems [3]–[7], dynamically decoupled systems [8],
[9], strongly connected systems [10], optimal static distributed
systems [11], [12], decentralized systems over graphs [13],
[14], and quadratically-invariant systems [15]. Recently, we
have studied the possibility of designing a near-optimal static
decentralized controller via a transformation of the optimal
centralized controller [16]. Furthermore, the stability analysis
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of decentralized control systems has attracted much attention
[17]–[20].

The difficulty of solving the long-standing ODC problem
stems from the fact that polynomial optimization problems
are NP-hard in their general form. Due to the NP-hardness of
finding a optimal minimum of such problems, several convex
relaxations have been introduced to reduce the complexity
at the expense of obtaining a near-global (or sub-optimal)
solution. These methods include, but are not restricted to,
Linear Matrix Inequality (LMI), Second-Order Cone Program-
ming (SOCP), and Semidefinite Programming (SDP) [21],
[22]. Recently, we have shown that the underlying structure
of a nonlinear optimization problem can be mapped into a
generalized weighted graph, where the exactness of the convex
relaxation of the problem depends on the specifications of this
graph [23], [24]. By building on this result, we have shown in
[25]–[27] that the SDP relaxations of the finite- and infinite-
horizon ODC problems have guaranteed low-rank solutions,
from which near-global solutions may be recovered. We have
demonstrated the efficacy of this technique on the control of
power systems in [28], [29].

In this work, we consider an important special case of
the stochastic optimal decentralized control (SODC) problem,
where the controller under design is considered static and
the open-loop system is stable. First, we prove that the
measurement noise and the control effort are both able to
indirectly convexify the problem. More precisely, we show that
if either the noise covariance or the input weighting matrix is
not too small, the design of an optimal decentralized controller
subject to any arbitrary sparsity pattern is naturally a convex
problem if the controller is sought within a convex stability
region around the origin. If the noise covariance and input
weighting matrix are so small that our local convexity result
is violated, we propose to add a convex penalty to the objective
(acting as a price of non-convexity) to convexify the control
design problem.

We also investigate the SODC problem in the case where the
goal is to design a sparse controller whose structure is not pre-
specified but softly penalized via a regularization term. This
sparsity-promoting technique has been introduced in [30] for
static controllers, and studied in [31] for dynamic controllers
under a quadratic-invariance assumption. In this work, we
aim to show that this sparsity-promoting technique is able to
design sparse static controllers with any given sparsity level.
To this end, we prove that the cardinality of the controller
as a function of the regularization coefficient changes by one
at each breakpoint, under some genericity assumptions. The
results of this work can be readily generalized to the design
of a dynamic controller for an unstable system, provided an
initial stabilizing controller with a desirable sparsity pattern
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is given. The details of this generalization are omitted due to
space restrictions.

Notations: Lowercase, bold lowercase and uppercase letters
are used for scalars, vectors and matrices, respectively (say x,
x, X). The symbol trace{W} denotes the trace of matrix W .
The notation vec{W} refers to the vectorization of a matrix
W . The symbol (·)T is used for transpose. The inner product
of two matrices M and N is denoted as 〈M,N〉. The set
of real numbers is denoted as R. The notation ⊗ is used
for the Kronecker product. The notation W � 0 means that
W is positive definite. The symbols |x| and |S| denote the
absolute value of a real number x and the cardinality of a set
S, respectively.

II. PRELIMINARIES

Infinite-Horizon Deterministic ODC (DODC): Consider the
system

x[τ + 1] = Ax[τ ] +Bu[τ ], τ = 0, 1, ... (1)

with the known matrices A ∈ Rn×n, B ∈ Rn×m and x[0] ∈
Rn. The objective is to design a stabilizing static controller
u[τ ] = Kx[τ ] to minimize the quadratic objective

J(K) =

∞∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
(2)

for given positive semidefinite matrices Q ∈ Rn×n and R ∈
Rm×m, subject to the structural constraint K ∈ K. Note that
K ∈ Rm×n is subspace that captures the sparsity pattern of all
permissible controllers, and therefore it imposes forced zeros
in certain entries of the unknown controller K.
Infinite-Horizon Stochastic ODC (SODC) problem: Con-
sider the stochastic system

x[τ + 1] = Ax[τ ] +Bu[τ ] + Ed[τ ], τ = 0, 1, ... (3a)
y[τ ] = x[τ ] + Fv[τ ], τ = 0, 1, ... (3b)

where A,B,E, F are some given matrices, and d[τ ] and
v[τ ] are disturbance and measurement noise, respectively. The
objective is to design a stabilizing static controller to minimize
the objective function

J(K) = lim
τ→+∞

E
(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
(4)

where E(·) is the expectation operator.
As stated earlier, designing optimal controller with a pre-

defined structure is NP-hard and intractable in the worst
case. More precisely, the above problem is non-convex with
respect to K even in the centralized case K = Rm×n.
Riccati equations convexify the problem by eliminating K
through a reformulation, but this technique cannot be used in
the decentralized problem where there are explicit structural
constraints on K. Note that the computational complexity of
ODC is related to two constraints: (i) K ∈ K, (ii) closed-
loop stability. In this paper, we only focus on issue (i) by
assuming that there is a known initial controller K0 and a
bounded convex region S ∈ Rm×n containing K0 such that
• All eigenvalues of A+BK are inside the unit circle for

every K ∈ S.

• The solution of the ODC problem belongs to S.
The above assumption implies that K = K0 is a feasible
solution for both DODC and SODC problems. With no loss
of generality, we assume that K0 = 0 (this can be achieved
by replacing the variable K with K +K0 and redefining the
system (1) or (3) based on K0). Our assumption implies that
A is a stable matrix, but we will show that K = 0 cannot be
an optimal solution under some genericity assumptions.

III. CONVEXITY OF ODC AND PENALIZATION

In this section, we study the local convexity of the ODC
problem.

A. Local Convexity of SODC

Before stating our main results, we reformulate the stochas-
tic optimal control problem.

Lemma 1. For every K ∈ S , the function J(K) associated
with the SODC problem can be written as

J(K) =vec{Σd}T Ã(K)−1vec{Q+KTRK}
+ vec{Σv}Tvec{(BK)TP (K)(BK) +KTRK}

(5)
where

Ã(K) = I − (A+BK)T ⊗ (A+BK)T (6)

Proof. Consider a matrix K ∈ S. Since (A+BK)τ is stable
and approaches zero as τ goes toward +∞, the function (4)
can be expanded as

J(K) = E
(

lim
τ→+∞

(x[τ ]TQx[τ ] + u[τ ]TRu[τ ])

)
= E

(
lim

τ→+∞
(x[τ ]T (Q+KTRK)x[τ ])

)
+ E

(
lim

τ→+∞
(v[τ ]TFTKRKFv[τ ])

)
= 〈P (K),Σd〉+ 〈(BK)TP (K)(BK) +KTRK,Σv〉

(7)
where

P (K) :=

∞∑
t=0

(
(A+BK)t

)T
(Q+KTRK)(A+BK)t (8a)

Σd := E{Ed[τ ]d[τ ]TET } (8b)

Σv := E{Fv[τ ]v[τ ]TFT } (8c)

Note that (8a) is equivalent to the Lyapunov equation

(A+BK)TP (K)(A+BK)−P (K)+Q+KTRK = 0 (9)

Moreover, Σd and Σv are covariance matrices for the dis-
turbance and measurement noises. Notice that since Q +
KTRK � 0 and (A + BK) is stable, (9) has a unique pos-
itive semidefinite solution P (K). Applying the vectorization
operation to (9) yields that

vec{P (K)} =
(
I − (A+BK)T ⊗ (A+BK)T

)−1
× vec{Q+KTRK}

(10)

This implies that (7) and (5) are equivalent, which completes
the proof.
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Remark 1. It is straightforward to verify that if Σv = 0 and
Σd = x[0]x[0]T , the SODC problem reduces to the DODC
problem. Due to this inclusion, the focus of the paper will
mainly be on SODC.

The reason behind writing J(K) as (5) is twofold:

1. This allows us to study the convexity of J(K). Based
on this analysis, we aim to obtain sufficient conditions
under which the SODC problem is a convex problem, no
matter what the structural set K is.

2. In the case where J(K) is non-convex, we can study how
to penalize it to make the resulting objective function
convex. This may lead to a near-global solution for the
controller K ∈ K.

Definition 1. Consider a function f : Rm×n → R with
respect to K. Denote the gradient and Hessian of f as Of(K)
and O2f(K), respectively. Note that Of : Rm×n → Rmn×1
and O2f : Rm×n → Rmn×mn. The ijth element of Of(K)
is the partial derivative of f(K) with respect to kij , and
the (ij, i′j′)th element of O2f(K) is the second-order partial
derivative of f(K) with respect to kij and ki′j′ . For the
sake of simplicity, we drop the argument K and simply use
the notations Of and O2f for the gradient and Hessian of
f(K). Henceforth, Of(ij) and O2f(ij, i′j′) denote the ijth

and (ij, i′j′)th entries of gradient and Hessian, respectively.
Given a function G : Rm×n → Rr×l with respect to K,
the notation DijG(K) shows the partial derivative of G(K)
with respect to kij , and D2

ij,i′j′G(K) denotes the second-order
partial derivative of G(K) with respect to kij and ki′j′ .

Before proceeding with the main results of this paper, we
decompose J(K) into three functions:

J(K) = vec{Σd}T Ã(K)−1vec{Q}︸ ︷︷ ︸
J1(K)

+ vec{Σd}T Ã(K)−1vec{KTRK}︸ ︷︷ ︸
J2(K)

+ vec{Σv}Tvec{(BK)TP (K)(BK) +KTRK}︸ ︷︷ ︸
J3(K)

(11)
The SODC can be reformulated as below.

Reformulated SODC: Minimize the function J1(K) +
J2(K) + J3(K) subject to the constraint K ∈ K ∩ S.

We aim to study the convexity of the reformulated SODC
problem.

Lemma 2. The following statements hold:

• If Σd � 0 and R � 0, then O2J2|K=0 � 0.
• If Σv � 0 and R � 0, then O2J3|K=0 � 0.

Proof. To study the Hessian of J2(K) at K = 0, consider a
matrix P̃ (K) such that

vec{P̃ (K)}T = vec{Σd}T Ã(K)−1 (12)

We can write

Ã(K)Tvec{P̃ (K)} = vec{Σd} (13)

and

(I − (A+BK)⊗ (A+BK))vec{P̃ (K)} = vec{Σd} (14)

Setting K = 0 yields that

(I −A⊗A)vec{P̃ (0)} = vec{Σd} (15)

which is equivalent to the Lyapunov equation

AP̃ (0)AT − P̃ (0) + Σd = 0 (16)

Since Σd � 0 and A is stable, we have P̃ (0) � 0. Define Mij

as a 0-1 matrix such that Mij(k, l) = 1 if (k, l) = (i, j) and
Mij(k, l) = 0 otherwise. It can be verified that

O2J2(ij, i′j′)|K=0 = vec{P̃ (0)}vec{MT
ijRMi′j′ + MT

i′j′RMij}
(17)

On the other hand,

MT
ijRMi′j′ = R(i, i′)Mjj′ (18a)

MT
i′j′RMij = R(i′, i)Mj′j (18b)

Therefore,

O2J2(ij, i′j′)|K=0 = 〈P̃ (0), R(i, i′)Mjj′ +R(i′, i)Mj′j〉
= 2P̃ (j, j′)R(i, i′)

(19)
There is a permutation matrix V such that O2J2|K=0 =
V −1(P̃ (0) ⊗ R)V . Since each eigenvalue of P̃ (0) ⊗ R is
the multiplication of two eigenvalues of the positive definite
matrices P̃ (0) and R, the matrix O2J2|K=0 is positive definite.

Similarly, it can be shown that the eigenvalues of O2J3|K=0

are equal to those of Σv ⊗ BTP (0)B + Σv ⊗ R. Since
P (0),Σv, R � 0, we conclude that O2J3|K=0 � 0.

Remark 2. The reason behind splitting the objective function
J(K) into three terms is that the local convexity of J2(K)
and J3(K) is guaranteed by the positive definiteness of
the parameters R, Σd and Σv . In other words, if J(K) is
locally non-convex at K = 0, it is due to J1(K). Notice
that the multiplication of R by a factor α greater than one
increases the eigenvalues of both O2J2|K=0 and O2J3|K=0,
while keeping J1(K) unchanged. Similarly, if the covariance
of the measurement noise is elevated by a factor of α, the
eigenvalues of O2J2|K=0 and O2J3|K=0 are multiplied by
α. This implies that the noise covariance and the matrix R
could make the objective function J(K) convex. However,
since J1(K) is not necessarily locally convex, elevating the
disturbance covariance would increase the non-convexity of
the problem.

Notation 1. Since J(K) depends on the fixed parameters
R, Σd and Σv , the notation J(K|R,Σd,Σv) would be used
instead of J(K).

Theorem 1. Assume that R, Σd and Σv are positive definite.
There exist two positive numbers α′ and β′ such that the
following statements hold for every α ≥ α′ and β ≥ β′:

i) The function J(K|αR,Σd, βΣv) is strictly convex at a
neighborhood of K = 0.

ii) If the tuple (A,B,Q,R,Σd,Σv) is generic, K = 0 is not
a local minimum of J(K|αR,Σd, βΣv).
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Proof. According to Lemma 2 and Remark 2, if the elements
of the pair (α, β) are sufficiently large, the local convexity
of J2(K|αR,Σd, βΣv) + J3(K|αR,Σd, βΣv) dominates the
possible non-convexity of J1(K|αR,Σd, βΣv). As a result,
the eigenvalues of the Hessian of J(K|αR,Σd, βΣv)) become
strictly positive at K = 0. Moreover, since A + BK is
stable for every K ∈ S, the function J(K|αR,Σd, βΣv))
is infinitely differentiable over this region. Therefore, this
function is convex around the origin.

To prove Part (ii), the partial derivatives of J(K) are
calculated in (21). It can be seen that the gradient of
J(K) is nonzero at K = 0, for a generic choice of
(A,B,Q,R,Σd,Σv).

To find α′ and β′ satisfying the conditions of Theorem 1,
it suffices to seek a pair (α′, β′) for which the Hessian of
J(K|α′R,Σd, β′Σv) is positive definite. Due to (11), this
Hessian is a linear function of α′ as well as a linear function
of β′ (it is bilinear in terms of both parameters). Hence, we
can set α′ or β′ equal to 1 and solve an LMI problem to find
the other parameter (note that there are infinitely many choices
for (α′, β′)).

One of the main results of this work is stated below.

Theorem 2. If Σv or R is relatively large and the set S is
relatively small, the reformulated SODC problem is convex
for every arbitrary control pattern K. Moreover, if the tuple
(A,B,Q,R,Σd,Σv) is generic, K = 0 is not a solution of
SODC.

Proof. Due to Theorem 1, if Σv or R is relatively large, the
function J(K) is convex at a neighborhood of K = 0. If S
is not so large that it is contained in this neighborhood, the
SODC problem becomes convex.

Theorems 1 and 2 state that the measurement covariance
and the matrix R can both convexify the SODC problem.
Moreover, as pointed out before, the minimum value of R or
Σv needed to ensure this convexity can be found via an LMI
problem. It is worthwhile to note that although increasing the
disturbance covariance Σd improves the convexity of J2(K),
it can deteriorate the possible non-convexity of J1(K). In
other words, if J1(K) + J2(K) is not convex, increasing the
disturbance noise would make the negative eigenvalues of the
Hessian of J(K) more negative.

Example 1: Assume that m = 5, n = 10, and Q and R are
identity matrices. We generate random matrices A and B as
follows:
• We write A = V −1DV , where each entry of V is chosen

randomly from a normal Gaussian distribution and D is
a diagonal matrix. The eigenvalues of A are generated as
rie

θi
√
−1, where ri’s and θi’s are uniformly chosen from

[0, 0.99] and [0, 2π], respectively.
• Each entry of B is chosen randomly from a normal

Gaussian distribution.
Assume that Σd = Σv = 0.5I . The minimum eigenvalue of
the Hessian of J(K|αR,Σd,Σv) at K = 0 is plotted for
α ∈ [0, 20]. It can be seen that the function is increasing
and becomes positive around α = 8. Similarly, the minimum

eigenvalue of the Hessian of J(K|R,Σd, βΣv) at K = 0 is
drawn for β ∈ [0, 10]. As before, the function is increasing
and becomes positive around β = 0.8. We have generated
many random systems according to the above probability
distributions and obtained similar numbers.

B. Penalized SODC

As proved in the preceding section, if either R or Σv is
sufficiently large, the SODC problem is convex. A question
arises as to whether we can still address the non-convexity
of SODC if the above condition is not satisfied. To this end,
we resort to a penalization method, where the objective is to
design a nonnegative penalty term C(K) such that Jc(K) =
J(K) +C(K) becomes convex in the region K∩S . Consider
a penalty function of the form C(K) = vec{K}TTvec{K}.
The problem reduces to finding a matrix T such that O2J +
T � 0 for every K ∈ K ∩ S . A simple choice for the matrix
T is aI , where a is equal to the minimum eigenvalue of O2J
over all matrices K ∈ K∩S. However, this sort of penalization
is not usually efficient because all elements of K are penalized
with the same weight or, equivalently, all eigenvalues of the
Hessian (including the positive ones) are shifted by the same
number a. A more efficient way of designing T is as follows:

min trace{T} (20a)

s.t. O2J |K + T � 0, ∀K ∈ K ∩ S (20b)
T � 0 (20c)

The reasoning behind the objective function of the above prob-
lem is that it aims to indirectly reduce the rank of T , which
would make the penalty function C(K) = vec{K}TTvec{K}
small for a large set of controllers K. Although (20) is
a convex program, it is infinite-dimensional. As a heuristic
method, one can impose the constraint O2J |K + T � 0 for a
small set of random controllers K. As future work, we aim
to find an analytical lower bound for O2J , from which T can
be readily designed.

After finding the appropriate T , one can solve a penalized
SODC problem, where the objective function J(K) is replaced
by the convex function Jc(K). The value of the penalty func-
tion at optimality reflects the near-global optimality guarantee
of the controller. The resulting convex program can be solved
using different algorithms, such as feasible direction method
[32]. In order to solve (20), we need a closed-form formula
for O2J . Furthermore, to use the feasible direction method, we
need a formula for OJ . These formulas are provided in (21).

IV. SPARSITY PROMOTING VIA L1 REGULARIZATION

In the preceding section, we studied the problem of design-
ing a controller with a given sparsity pattern K. In this section,
the objective is to design a controller whose sparsity pattern
is not fixed but is instead softly enforced via a regularization
term.

Recently, a sparsity promotion method using the L1 norm
has been studied in [30]. We adopt the same strategy in this
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Fig. 1: The minimum eigenvalue of the Hessian of J(K) as a function of R and Σv

Q̃(K) = Q + KTRK (21a)

DijQ̃(K) = KTRMij + MT
ijRK (21b)

D2
ij,i′j′Q̃(K) = MT

ijRMi′j′ + MT
i′j′RMij (21c)

DijÃ(K) = −(BMij)
T ⊗ (A + BK)T − (A + BK)T ⊗ (BMij)

T (21d)

D2
ij,i′j′Ã(K) = −(BMij)

T ⊗ (BMi′j′)
T − (BMi′j′)

T ⊗ (BMij)
T (21e)

DijÃ(K)−1 = −Ã(K)−1DijÃ(K)Ã(K)−1 (21f)

D2
ij,i′j′Ã(K)−1 = −Di′j′Ã(K)−1DijÃ(K)Ã(K)−1 − Ã(K)−1D2

ij,i′j′Ã(K)Ã(K)−1 − Ã(K)−1DijÃ(K)Di′j′Ã(K)−1 (21g)

vec{DijP (K)} = DijÃ(K)−1vec{Q̃(K)}+ Ã(K)−1vec{DijQ̃(K)} (21h)

vec{D2
ij,i′j′P (K)} = D2

ij,i′j′Ã(K)−1vec{Q̃(K)}+ DijÃ(K)−1vec{Di′j′Q̃(K)}+ Di′j′Ã(K)−1vec{DijQ̃(K)}
+ Ã(K)−1vec{D2

ij,i′j′Q̃(K)} (21i)

OJ(ij) = vec{Σd}T vec{DijP (K)}+ vec{Σv}T vec{(BMij)
TP (K)(BK) + (BK)TP (K)(BMij) + (BK)TDijP (K)(BK)

+ DijQ̃(K)} (21j)

O2J(ij, i′j′) = vec{Σd}T vec{D2
ij,i′j′P (K)}+ vec{Σv}T vec{(BMij)

TP (K)(BMi′j′) + (BMi′j′)
TP (K)(BMij)

+ (BMi′j′)
TDijP (K)(BK) + (BK)TDijP (K)(BMi′j′) + (BMij)

TDi′j′P (K)(BK) + (BK)TDi′j′P (K)(BMij)

+ (BK)TD2
ij,i′j′P (K)(BK) + D2

ij,i′j′Q̃(K)} (21k)
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Fig. 2: Solution path and Cardinality of the optimal controller for randomly generated system

work. Consider the regularized SODC problem

min J(K) + C(K) + λ||K||1 (22a)
s.t. K ∈ S (22b)

where λ is a nonnegative number and ‖ · ‖1 denotes the sum
of the absolute values of all entries of K. The results of this
paper can be easily generalized to the case where ||K||1 is
replaced by a weighted sum of some or all absolute values of
the entries of K. As before, we assume that J(K) + C(K)
is convex over S to ensure the convexity of (22), which is
guaranteed by a nonzero penalty C(K) or a relatively large
matrix R or Σv . The main objective is to study the sparsity
level of the optimal control K as a function of λ.

The main result of this section is to show that, for a generic

system, the cardinality of K as a function of λ is a piecewise
constant function, where the cardinality changes by one at
each breakpoint. Although the main focus of this paper is on
discrete time systems, this result holds for both continuous
and discrete systems.

In general, there are 2mn different sparsity patterns for the
controller K. Therefore, finding the best structure(s) among
this exponential number of structures via enumeration is
neither practical nor efficient. Due to this difficulty, we use
the L1 regularization and prove the following results under
generic conditions:

1. The optimal controller corresponding to λ = 0 is dense,
whereas the one for large λ’s is highly sparse (K = 0).

2. As λ decreases from +∞ to 0, the sparsity of the optimal
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controller changes gradually and there is no big jump in
the cardinality of the controller.

2. Given any arbitrary integer from 0 to mn, there is a
range of values for λ such that the cardinality of the
corresponding optimal controllers is the same as that
number.

3. As λ changes from +∞ to 0, at least mn + 1 sparsity
patterns are obtained. This induces an ordering on mn
sparsity patterns out of 2mn patterns. This ordering shows
the trade-off between the optimal performance and the
sparsity level.

Before presenting the main results of this section, it is
desirable to examine the cardinality of the optimal controller
in a numerical example.

Example 2: Consider a stochastic continuous-time system
with the parameters A ∈ R5×5 and B ∈ R5×5 whose entries
are chosen randomly from Gaussian distributions with a zero
mean and variances 25 and 1, respectively. The matrix A
is then normalized to make it stable. The cardinality of the
optimal controller and the trajectory of its entries are obtained
using the local-search method described in [30] (without
adding any explicit penalty C(K)). As can be observed in
Figure 2, the cardinality changes by one at each breakpoint
point, and it reduces from 25 to 12. If λ increases beyond 30,
the cardinality gradually reduces to 0.

To streamline our presentation, we make two assumptions:
1. The convex function J(K) + C(K) is strictly convex

over S.
3. The solution path of the optimal controller resides in the

interior of S . Note that our proof can be generalized to
the case where the path hits the boundary of S.

Definition 2. Let K∗(λ) denote the unique optimal solution
of (22) for a given λ. Define the active set of K∗(λ) as the set
of nonzero entries of K∗(λ) for a given λ, which is denoted
as Iac(λ). It is said that λ∗ is a breakpoint if Iac(λ) changes
at λ = λ∗. Denote the set of all breakpoints as Λb.

Lemma 3. The minimizer K∗(λ) is continuous in λ.

Proof. Note that J(K) is coercive since S is bounded. The
proof follows immediately from the result in [33].

Corollary 1. Λb is a countable set.

Proof. It is straightforward to verify that the continuity of
K∗(λ) (due to Lemma 3) implies that Λb cannot contain any
continuous interval.

Definition 3. It is said that the objective function J(K)
is generic with respect to its partial derivatives if for any
infinitesimal perturbation of the partial derivatives at a given
point K, there exists an infinitesimally perturbed system such
that the partial derivatives of its objective function correspond
to these perturbed partial derivatives. For simplicity, if a
system with the objective function J(K) is generic with
respect to its partial derivatives, its objective function is said
to be generic.

In theory, the function Iac(λ) could have a breakpoint at
which |Iac(λ)| remains unchanged (i.e., the sparsity pattern

changes at a breakpoint but the sparsity level remains the
same). In what follows, we prove that this case cannot occur
if J(K) + C(K) is generic.

Theorem 3. If the function J(K)+C(K) is a generic strictly
convex polynomial p(K), then with probability 1 the function
|Iac(λ)| would change by 1 at each breakpoint λb ∈ Λb.

Proof. By contradiction, suppose that |Iac(λ)| does not change
by 1 at some breakpoint λb. Then, there are three possibilities:
(i) |Iac(λ)| increases by at least 2, (ii) |Iac(λ)| decreases
by at least 2, (iii) the cardinality remains the same but at
least one new element enters Iac(λ) and exactly the same
number of elements leave Iac(λ). With no loss of generality,
we investigate only scenario (i) in this proof. First, we show
that as λ approaches λb from both sides, it must satisfy a
particular set of equations. Then, we prove that these equations
are satisfied with probability zero for a generic function p(K).

Assume that λ+b is the smallest breakpoint that is greater
than λb. Similarly, denote λ−b as the largest breakpoint that
is less than λb. Note that it may happen that either λ+b or
λ−b does not exist if λb is the smallest/largest breakpoint in
Λb, in which case the argument to be presented next needs
a slight modification. Because Λb is a discrete set in light
of Corollary 1, one can write λ−b < λb < λ+b . Consider a
number r such that |Iac(λb + ε+)| = r for every 0 < ε+ <
λ+b − λb. For simplicity, we index the elements of matrix K
with a single number. Denote the nonzero elements of K∗(λb+
ε+) as {k∗1(λb+ ε+), k∗2(λb+ ε+), ..., k∗r (λb+ ε+)}. For every
i 6∈ Iac(λb + ε+), we have k∗i (λb + ε+) = 0. The first-order
optimality conditions for K∗(λb + ε+) result that∣∣∣∂p(K)

∂ki

∣∣∣
K=K∗(λb+ε+)

= λb + ε+ ∀i ∈ {1, 2, ..., r}

(23a)∣∣∣∂p(K)

∂kj

∣∣∣
K=K∗(λb+ε+)

= sj(λb + ε+) ∀j 6∈ {1, 2, ..., r}

(23b)

for some numbers sj ∈ [−1, 1].
By assumption, the relation |Iac(λb−ε−)| = r+2 holds for

every 0 < ε− < λb − λ−b . This means that as λ decreases to
pass through λb, two elements of K will be added to the set
of the nonzero elements. Denote these new elements as k∗r+1

and k∗r+2. Then, the optimality conditions at λb − ε− can be
written as∣∣∣∂p(K)

∂ki

∣∣∣
K=K∗(λb−ε−)

= λb − ε− ∀i ∈ {1, 2, ..., r + 2}

(24a)∣∣∣∂p(K)

∂kj

∣∣∣
K=K∗(λb−ε−)

= sj(λb − ε−) ∀j 6∈ {1, 2, ..., r + 2}

(24b)

for some numbers sj ∈ [−1, 1]. Without loss of generality in
our analysis, we drop the absolute values in (23) and (24).

Consider the limiting behavior of k∗m+1(λ) and k∗m+1(λ).
Note that k∗m+1(λb + ε+) = k∗m+2(λb + ε+) = 0, for every
0 < ε+ < λ+b − λb. Due to the continuity of K∗(λ), one can
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write

k∗r+1(λb) = lim
ε+→0+

k∗r+1(λb + ε+) = 0 (25a)

k∗r+2(λb) = lim
ε+→0+

k∗r+2(λb + ε+) = 0 (25b)

Moreover, since , p(K) is continuously differentiable, it fol-
lows from (24) that

∂p(K)

∂kr+1

∣∣∣
K=K∗(λb)

= lim
ε−→0+

∂p(K)

∂kr+1

∣∣∣
K=K∗(λb−ε−)

= λb

(26a)
∂p(K)

∂kr+2

∣∣∣
K=K∗(λb)

= lim
ε−→0+

∂p(K)

∂kr+2

∣∣∣
K=K∗(λb−ε−)

= λb

(26b)

Therefore,
∂p(K)

∂ki

∣∣∣
K=K∗(λb)

= λb ∀i ∈ {1, 2, ..., r + 2} (27a)

∂p(K)

∂kj

∣∣∣
K=K∗(λb)

= sjλb ∀j 6∈ {1, 2, ..., r + 2} (27b)

where sj ∈ [−1, 1], k∗l (λb) = 0 for l 6∈ {1, 2, ..., r} and
k∗t (λb) > 0 for t ∈ {1, 2, ..., r}. Let ā denote the vector of all
coefficients of p(K). It is desirable to identify the set of all
vectors ā for which there exist λb and {k∗1 , ..., k∗r} such that
(27a) holds (recall that k∗r+1 = k∗r+2 = 0). Therefore, one can
consider (27a) as a set of polynomial equations in terms of the
variables λb, k∗1 , ..., k

∗
r . The number of these equations is r+2,

while the number of variables is r + 1. This set of equations
has a common zero (λb, k

∗
1 , ..., k

∗
r ) if its resultant, denoted as

f(a), vanishes at a = ā. Note that the resultant is a polynomial
function of the coefficients of p(K). One can easily verify that
f(a) is not identical to zero. Therefore, a generic perturbation
of the coefficient vector for p(K) does not satisfy the equation
f(ā) = 0. This means that (27a) cannot be satisfied for a
generic polynomial, which is a contradiction.

Theorem 3 proves that if the penalized objective of SODC
were a generic polynomial, then the cardinality of Iac(λ)
would change by one at each breakpoint. In order to make
use of this result for the true objective of SODC, we propose
two perturbation methods next.

A. Functional Perturbation

The objective of this part is to show that there exists a
strictly convex and generic polynomial p(K) that is arbitrarily
close to J(K) +C(K). Using Theorem 3, this result implies
that the cardinality of the optimal controller changes by one at
breakpoints for an infinitesimal generic perturbation of J(K)+
C(K).

Lemma 4. For a sufficiently small ε > 0, there exists a generic
polynomial p(K) such that |J(K) + C(K) − p(K)| ≤ ε for
every K ∈ S.

Proof. Since S is bounded and J(K) + C(K) is infinitely
differentiable on S, there exists an ε > 0 with the property
that for every 0 < ε′ < ε, there is a strictly convex polynomial
function p̃(K) such that

|J(K) + C(K)− p̃(K)| ≤ ε′, ∀K ∈ S (28)

Now, consider a generic and strictly convex polynomial p̄(K)
whose coefficients are chosen randomly. For every 0 < ε′′ ≤
ε−ε′, consider the polynomial p(K) = p̃(K)+ ε′′

µ p̄(K), where
µ is a sufficiently large number. Notice that

|Jc(K)− p(K)| ≤ ε, ∀K ∈ S (29)

and that p(K) is generic and strictly convex. This completes
the proof.

Theorem 4. If J(K)+C(K) is perturbed by an infinitesimally
small function, then the cardinally of the optimal controller of
the perturbed regularized SODC problem changes by 1 at each
breakpoint.

Proof. This is an immediate consequence of Theorem 3 and
Lemma 4.

Theorem 4 states that the cardinality of the optimal con-
troller changes by one at each breakpoint under generic
conditions.

B. Coefficient Perturbation

Unlike the functional perturbation of the objective function
of SODC, we focus on the genericity of the stochastic system
in this section.

Definition 4. A generic perturbation of a matrix M is a
new matrix M + Ψ, where Ψ is an infinitesimal random
perturbation.

Theorem 5. Assume that A has full column rank, and that
Q and Σd are positive definite. With a generic infinitesimal
perturbation of B, the cardinally of the optimal controller
of the regularized SODC problem changes by 1 at each
breakpoint over a nonempty region around K = 0.

Proof. To prove the theorem, it suffices to show that the
polynomial approximation of J(K)+C(K) is generic under a
generic perturbation of B. Using (12) and (21), one can write

〈Σd, DijP (K)|K=0〉 =vec{P̃ (0)}T vec{MT
ijB

TP (0)A

+ATP (0)BMij}
(30)

We aim to show that all partial derivatives of P (K) are
linearly independent at K = 0, and hence they remain
independent in a nonzero region around K = 0. To prove
this statement, define the m× n matrix H as

H(i, j) =
∂J(K)

∂kij

∣∣∣
K=0

= 〈Σd, DijP (K)|K=0〉 (31)

for i ∈ {1, 2, ...,m} and j ∈ {1, 2, ..., n}. One can verify that

H = 2BTP (0)AP̃ (0) (32)

Since Q and Σd are positive definite and A has full rank,
P (0)AP̃ (0) is full rank. Therefore, any infinitesimal pertur-
bation of partial derivatives can be mapped to a perturbed B.
Since B is generic (with a generic perturbation), the partial
derivatives of J(K) at K = 0 are generic. Consider the set
of equations (27a) after replacing p(K) with J(K) + C(K).
Since J(K) is generic, this system of equations does not have
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a solution. Following the proof of Theorem 3, this means
that the cardinally of the optimal controller of the regularized
SODC problem changes by 1 at each breakpoint.

Remark 3. In this section, the stability condition is captured
by a bounded set S. However, note that this constraint can be
removed and instead implicitly implied if λ is not too small.
In fact, if the regularization coefficient λ is restricted to be
greater than a positive number λmin, then

λmin||K∗(λ)||1 ≤ J(K∗(λ)) + C(K∗(λ)) + λ||K∗(λ)||1
≤ J(0) + C(0)

(33)
or equivalently ||K∗(λ)||1 ≤ (J(0) + C(0)).(λmin)−1. This
restricts the optimal controller to a neighborhood of the origin,
and acts as a surrogate for the explicit constraint K ∈ S for
an appropriate choice of λmin.

V. CONCLUSIONS

This paper studies an important special case of the stochastic
optimal decentralized control (SODC) problem, where the goal
is to design a static structurally constrained controller for a
stable system. First, we prove that if either the noise covariance
or the input weighting matrix is not too small, the design of
an optimal decentralized controller subject to any arbitrary
sparsity pattern is naturally a convex problem, provided that
the controller is sought within a convex stability region around
the origin. If the noise covariance and input weighting matrix
are not sufficiently large, a convex penalty is added to the
objective to convexify the control design problem. We also
investigate the SODC problem in the case where the goal
is to design a sparse controller whose structure is not pre-
specified but softly penalized via a regularization term. It is
shown that the cardinality of the controller as a function of the
regularization coefficient changes by one at each breakpoint,
under some genericity conditions. The results of this work can
be readily generalized to the design of a dynamic controller
for an unstable system, provided that an initial stabilizing
controller with a desirable sparsity pattern is available.
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