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Polynomial Optimization

O Polynomial Optimization:

min = Mz Special case: Combinatorial
optimization and integer

st. x2=1 programming problems

Very hard to solve

Point A: Local solution
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Point B: Global solution
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Point C: Near-global solution

Focus of this talk




Objective

Global cost

Optimality Guarantee 2 > 100
Near-global cost

flx
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A number between 0 % and 100 %

¢ Focus of talk: Find a near-global solution with a high optimality guarantee (close to 100%).

Problem 1: Convexification Problem 2: Numerical Algorithm
Design a convex problem whose solution is Design an algorithm to solve the (high-dim)
near global for original problem. convex program numerically.

¢ Approach: Low-rank optimization, matrix completion, graph theory, convexification

Let's see a real application before developing a rigorous theory



Power Systems

O Power system:

+» Alarge-scale system consisting of generators,
loads, lines, etc.

Distribution
++ Used for generating, transporting and
distributing electricity.

A

ISO, RTO, TSO

NP-hard

(real-time operation and market)




Optimal Power Flow

Optimal Power Flow: Optimally match supply with demand
Vector of complex voltages

7
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st. 28 Mr <a;. i=1.2....m

O Real-time operation: OPF is solved every 5-15 minutes.
O Market: Security-constrained unit-commitment OPF

0 Complexity: Strongly NP-complete with long history since 1962.

0 Common practice: Linearization

 FERC and NETSS Study: Annual cost of approximation > S 1 billion

OPF feasible set
(lan Hisken et al. 2003)

A multi-billion critical system depends on optimization.




Convexification

trace{ MozxH}

/
7
1}_1%1 H Moz O Transformation: Replace Xx™ with W.
st. 2 M;r <a;, i=1,2,...m O W is positive semidefinite andfrank 1

SDP relaxation

1 rile _"?‘ I 4
Jnin, trace{ MW}
st wacel MW} <a;, i=12...m O Rank-1 SDP: Recovery of a global solution X

Penalized SDP

11‘1{%,11 trace{ MoW} + A g(WW)
d Rank-1 penalized SDP: Recovery of a near-
S.1. trace{iﬂl[il'{’;} é a;, 1=1.2, " global Solution X

W =0




Exactness of Relaxation

L SDP is not exact in general.

L SDP is exact for IEEE benchmark examples and several real data sets.

cyclic

|:> Theorem: Exact under positive LMPs

with many transformers.

acyclic
Theorem: Exact under positive LMPs.

Physics of power networks (e.g., passivity) reduces computational complexity
for power optimization problems.

1. S.Sojoudiand ). Lavaei, "Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure,” SIOPT, 2014. 7
2. S.Sojoudiand J. Lavaei, "Physics of Power Networks Makes Hard Optimization Problems Easy to Solve," PES 2012.



Promises of SDP

U Observation: SDP may not be exact for ISOs’ large-scale systems (some negative LMPs).

L Remedy: Design a penalized SDP to find a near-global solution.

Case Cost Guarantee | Time (sec)
Polish 2383wp 1874322.65 99.316% 529
Polish 2736sp 1308270.20 09.970% 701
Polish 2737sop 777664.02 09.995% 675
” ‘ Polish 2746wop | 1208453.93 09.985% 801
s Polish 2746wp | 1632384.87 | 99.962% 699
Polish 3012wp 2608918.45 090.188% 814
Polish 3120sp 2160800.42 09.073% 910

SDP looks very promising for energy applications

(] SDP revitalized the area:

X/

** Follow-up work in academia

X/

% Interest from industry

X/

% One-day workshop on SDP at IBM Dublin

*» Several talks at FERC’s summer workshops in 2012-14

1.J. Lavaei and S. Low, "Zero Duality Gap in Optimal Power Flow Problem," IEEE Transactions on Power Systems, 2012.
2.J. Lavaei, D. Tse and B. Zhang, "Geometry of Power Flows and Optimization in Distribution Networks," IEEE Transactions on Power System, 2014.

3. R. Madani, S. Sojoudi and J. Lavaei, "Convex Relaxation for Optimal Power Flow Problem: Mesh Networks," IEEE Transactions on Power Systems, 2015.




Outline

Arbitrary Real/Complex Polynomial
Optimization

Conversion

min  xH Moz
rxeD"

S.t. ;IfH.-'Uiir <a;, 1=1,2,...m

SDP/ Penalized SDP

Ile{ifll trace{ MoW} + A g(W)
s.t. trace{ M;W} <qa;, i=1,2,...,m

W =0

How does structure make
SDP relaxation exact?

Connection between
sparsity and rank?

How to design
penalized SDP?

Design scalable
numerical algorithm?

Case Study: Optimal
stochastic control

How to find a near-
global solution for
dense problems?

Complexity analysis based
on generalized weighted graph

Proof of existence of
—> |ow-rank solution using
OS and treewidth

Propose two methods
to design penalty

Cheap iterations for large-
scale problems

Implication for long-
standing distributed
decision making problem

—>

—> Find a sparse representation

9
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Highly-Structured Optimization

U Problem: How does structure affect computational complexity (e.g., positive coefficients)?

O Approach: Map the structure into a graph.
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Real-Valued Optimization

The SDP relaxation is exact if

55 70, V(i j) € G &= Edge
(iJ)EO,
L Special cases:

< Negative optimization: Arbitrary graph SOMRES CElm o

1. S. Sojoudi and J. Lavaei, "Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure," SIOPT, 2014. 12



Complex-Valued Optimization

1 Real-valued case: “T “ is sign definite if T and —T are separable in R:

U Complex-valued case: “T “ is sign definite if T and —T are separable in R%:

x . 1 o 2
x3 * 3
4I. .\\

e

Theorem: SDP is exact for acyclic graphs with sign
definite sets and certain cyclic graphs.

L The proposed conditions include several existing ones ([Kim and Kojima, 2003], [Padberg,
1989], etc.).

1. S. Sojoudi and J. Lavaei, "On the Exactness of Semidefinite Relaxation for Nonlinear Optimization over Graphs: Part |," CDC 2013.
2. S. Sojoudi and J. Lavaei, "On the Exactness of Semidefinite Relaxation for Nonlinear Optimization over Graphs: Part II," CDC 2013. 13
3. S. Sojoudi and J. Lavaei, "Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure," SIOPT 2014.



Examples

Example 1: Physics of power grids reduces computational complexity.

o
Dy Dii Coefficients of X; X;
- o
(i —= ~— (%) —
qij gji

Sign definite due to passivity

Example 2: Graph idea generalizes to certain non-polynomial optimization problems.

min Z ag.ieITﬂ'f”’z + Z 2T Mo + bg;{?
vekr i=k+1
k 1
s.t. Z ajt-e"cTﬂ'fﬁI + Z J'Tﬂfj.i;r + b?l‘ <0, j=12,..m
i=1 i=k+1

14
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Graph Notions

L OS-vertex sequence: [Hackney et al, 2009]

Partial ordering of vertices

Assume O,,0,,...,0,, is a sequence.

O, has a neighbor w; not connected to the
connected component of O, in the subgraph

induced by Oy,...,0; OS: Maximum cardinality among all
OS sequences

R/ K/ R/
0’0 0.0 0‘0

Va Vs Va Vi
(c) e

U Tree decomposition: Map the graph Gintoatree T I @| @ ] |@
d f

X/

** Each node of Tis a bag of vertices of G

) O—O—@—/@©
¢ Each edge of G appearsinone node of T 5 © @ © @

% If a vertex shows up in multiple nodes of T, Vertices Bags of vertices
those nodes should form a subtree

Treewidth of G: Minimum width
O Width of T: Max cardinality minus 1

L Roughly speaking, very sparse graphs have high OS and low treewidth? (tree: 0S=n-1, TW=1)

1. S. Sojoudi, R. Madani, G. Fazelnia and J. Lavaei, “Graph-Theoretic Algorithms for Solving Polynomial Optimization Problems,” CDC 2014 (Tutorial paper). 16



Low-Rank Solution

min  zH Myz O Sparsity Graph G: Generalized weighted graph

reDm

st. oMz <a;, i=1,2,....m with no WEIghtS.

O SDP may has infinitely many solutions.

ﬂ, SDP O How to find a low-rank solution (if any)?

O Consider a supergraph G’ of G.

nﬁi_yn trace{ MoW'}

s.t. trace{M;W} <a;, =12 ..m
Theorem: Every solution of perturbed SDP satisfies

W =0 .
- the following:
Rank{ WP} < |G’ —llcl,in{OS(é}'s) ‘ (G'—G)C g, C Q’}
ﬂ Perturbed SDP
min - trace{ MoWV'} + > sl Equal bags: TW(G)+1 for a right choice of G’
(J:k)€G’
s.t. trace{ M;W} <a;, i=1,2,...,m Unequal bags: Needs nonlinear penalty to
attain TW(G)+1
W0

L This result includes the recent work Laurent and Varvitsiotis, 2012.

1. R.Madani et al., “Low-Rank Solutions of Matrix Inequalities with Applications to Polynomial Optimization and Matrix Completion Problems,” CDC 2014. 17
2.  R.Madani et al., “Finding Low-rank Solutions of Sparse Linear Matrix Inequalities using Convex Optimization,” Under review for SIOPT, 2014.



lllustration: Power Optimization

Case studies:

{ System G ‘ tw{G} H System G | Bound on tw{G} ‘
IEEE 14-bus 2 Polish 2383wp 23
: IEEE 30-bus 3 Polish 2736sp 23
1 39-bus 3 Polish 2746wop 23
' IEEE 57-bus 5 Polish 3012wp 24
[EEE 118-bus 4 Polish 3120sp 24
IEEE 300-bus 6 Polish 3375wp 25

1
1
1
1
1
1
1
: New England
1
1
1
1
1
1
1

T idth of Poland < 30 .
reewiath ot Fotand < SDP relaxation of every SC-UC-OPF problem

Treewidth of NY < 40 solved over NY grid has rank less than 40 (size of
W varies from 8500 to several millions).

1. R.Madani, S. Sojoudi and J. Lavaei, "Convex Relaxation for Optimal Power Flow Problem: Mesh Networks," IEEE Transactions on Power Systems, 2015.
2. R.Madani, M. Ashraphijuo and J. Lavaei, “Promises of Conic Relaxation for Contingency-Constrained Optimal Power Flow Problem,” Allerton 2014. 18
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Non-convexity Localization

min = Moz
reDn

s.L. J'Hﬂ[i;c <a;, 1=1,2,...

m

l

in trace{ MoW
win race{ MW}

W =0

s.t. trace{ MW} <a;, i=1,2,..,m

l

11‘1%;1 trace{ MoW} + A g(W)

s.t. trace{ M;W} <a;, 1=1,2,..,

m

SDP works if G has no edges:

2 _
ry =  Yi (LP)

e Assume SDP fails.

 Can we identify what edges
caused the failure?

* Localized non-convexity v.s.
uniform non-convexity?

Approach for localized case:
Penalty over problematic edges

20



Problematic Edges

Rank of W

-
_____________________ 1
i 1,350 (4,79 78] |
: I-----/ I-_--/ [ty :
H 12,4,5==14,5,9=5,69, I
T A A :
:L2,3,4I '9 13, 14— 6 9,13,—19 12, 13;|
_____ i19,13,14 19,12,13]1

1
________________ 1
! 19,10,11 =t 6,911 I
b e e ]

Submatrices

of W
1 1
: ~ 0 i
: i
1 1
1 1
1 1
1 1
1 1
| =0 1
: i
1 1
1 1
1 1
e e i

Max rank of submatrices

Problematic edges:
Identified based on high-
rank submatrices

I[EEE 300-bus: 2
Polish 2383-bus : 11

1. R. Madani et al., “Finding Low-rank Solutions of Sparse Linear Matrix Inequalities using Convex Optimization,” Under review for SIOPT, 2014. 21
2. R. Madani, M. Ashraphijuo and J. Lavaei, “Promises of Conic Relaxation for Contingency-Constrained Optimal Power Flow Problem,” Allerton 2014.



Example: Near-Global Solutions

Case ™ Cost Guarantee | Time (sec)
. : ; Chow’s 9 bus 2 5206.68 100% <5
Strategy: .Pe_nallze reactive loss over EE e —tarerss ek —
problematic lines IEEE 24 bus 4 | 6335220 100% <5
IECE 30 bus 3 576.89 100% <5
NE 39 bus 3 41864.40 99.994% <5
TEEE 57 bus 3 41737.78 100% <5
IEEE 118 bus 3 120660.81 99.995% <5
TEEE 300 bus 6 719725.10 99.998% 13.9
Polish 2383wp 23 1874322.65 | 99.316% 529
. pe Polish 2736sp 23 1308270.20 | 99.970% 701
U Modified IEEE 118-bus: Polish 2737sop 23 | 777664.02 99.995% 675
Polish 2746wop | 23 1208453.93 | 99.985% 801
R ; Polish 2746wp 24 | 1632384.87 | 99.962 % 699
* 3 local solutions Polish 3012wp 24 | 260891845 | 99.188% 814
. Polish 3120sp 24 | 2160800.42 | 99.073 % 910
%* Costs: 129625, 177984, 195695
Case Minima Cost Guarantee
P e | W a2 —
a yA & i (8
: 120625.03 1 WB5 2 94658 99.995%
1 : WB5 Mod 3 1482.22 100%
: 120625.02 1 LMBM3 5 5694.54 100%
i Rank2/ _ . I LMBM3_50 2 5323.86 99.807%
I SDP  129625.01 h Rank 1 g 1 case221oop 2 4538.80 100 %
I oct ' case30l00p 2 2863.06 100%
: 129625.00 1 case30loop Mod 3 2861.88 100%
1 : case39 Mod4 3 557.15 99.999%
1 120624.99" casel118 Mod1 3 129625.19 | 99.999%
: | : casel 18 Mod2 2 85987.59 100 %
1 12962198 02 04 06 0.8 1 : case300 Mod2 2 37464346 | 99.996%
I
I Lambda 1
i I
L ——— |

7000 simulations

1. R. Madani, S. Sojoudi and J. Lavaei, "Convex Relaxation for Optimal Power Flow Problem: Mesh Networks," IEEE Transactions on Power Systems, 2015.
2. R. Madani, M. Ashraphijuo and J. Lavaei, “Promises of Conic Relaxation for Contingency-Constrained Optimal Power Flow Problem,” Allerton 2014.




Penalty Design

Why was penalty chosen as loss?
11‘1)}11 trace{ MW} + A g(W)
s.t. trace{ M;W} <a;, 1=1,2...;m

W =0

First try: g(W) = [|[W]|«

s Compressed sensing and phase retrieval
** Need nlog n measurements for a much

simpler problem [Candes and Recht, 2009].

Proposed penalty:
g(W) = trace{ MW}

Algorithm design: Can we design an SDP to find
the best M?

Good penalty: Minimization of penalty by itself (A = o) leads to a rank-1 solution.

Study of a simpler case:

HIIE;H trace{ M W'}

W =0

s.t.  trace{ M;,W} =uaqa;, i=1,2,..

N

Guess for solution of original QCQP: X

« M >0
e Mz, =0
e Zero 1s a simple eig of M.

23



Penalty Design

Theorem: If Jacobian is nonsingular,
then SDP is exact in a vicinity of X..

Recoverable region for X

>

Ry ={x | g, M) = 0}

=

Local behavior: Linearization solves
approximately but SDP solves exactly.

Global behavior: The region could be as big as
the entire space.

Design of M: Include X. and a set of points
A

LMI

Power flow equations for power systems: M is a one-time design independent of loads.

1. M. Ashraphijuo and J. Lavaei, “SDP-Type Algorithm Design for Systems of Polynomials," Preprint, 2015.
2. R.Madani, R. Baldick and J. Lavaei, “Convexification of Power Flow Problem over Arbitrary Networks,” Preprint, 2015.

24
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Low-Complex Algorithm

F T T T i et destenienienie H

! | I :

i ] =0

Goal: Design a low-complex i =01 i i
algorithm for sparse : - I :
LP/QP/QCQP/SOCP/SDP : | — i :
! i : -0 |

: = ! :

I ! ' I

I ! ! I

1 1 I

i ' i I

] -3 L ]

@y W)

min  tr(A;W3) + tr(AaWa) + - - + tr(A. W)

mmm) Sum of agents’ objectives

subject to:

W; =0
mmm) Overlapping constraints

I-‘V,‘(fgj. 1'—.;_,') = I-'I’rj(fj,'., Ijg}

for every i € V and (i,j) € £.
e 1

O Distributed Algorithm: ADMM-based dual decomposed SDP (related work: [Parikh and Boyd,

1
1
1
I
tr(B,W;)=c,, p=1,....k ! Local constraints
i - 1 ‘
1
1
1
1
1
1

2014], [Wen, Goldfarb and Yin, 2010], [Andersen, Vandenberghe and Dahl, 2010]).

O Iterations: Closed-form solution for every iteration (eigen-decomposition on submatrices)

1. A. Kalbat and J. Lavaei, “Alternating Direction Method of Multipliers for Sparse Semidefinite Programs,” Preprint, 2015. 26



Example

Number of blocks (agents): 2000

Size of each block: 40

Number of constraints per block: 5

Overlapping degree: 25%

Number of entries for full SDP: 6.4B

Number of entries for decomposed SDP: Over 3M

YV V V V V V V

Number of constraints: Several thousands

O 20 minutes in MATLAB with cold start (2.4 GHz and 8 GB):

16

99.9% feasible and

0.1l
: globally optimal

0.01}

Normalized Error

0.001¢

0.0001¢ E

(0] 50 100 150 200 250 300 350 400
Ilteration 27
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Distributed Control of Stochastic Systems

Stochastic Distributed Control: Design u[7| = Ky[r] for

x|t + 1] = Az[r] + Bulr m=) disturb
{ @ isturbance

y[r] = Cz[7]

o noise
to minimize:

Distributed control

(NP-hard: Witsenhausen’s example)

lim & (z[r]" Qz[r] + u[r]" Ru[7])

T—+00

e ;" New England
> Test System

i - -

(b) Localized

Ring

9 -—Localized
—Star
. . —Decentralzed|
i)

5 10 15
o

| Optimality degree for stochastic ODC

(d) Star Topology (1 in cen-
ter)

Optimality Degree %
£
b ————— -

1. G. Fazelnia et al., “Convex Relaxation for Optimal Distributed Control Problem — Part I: Time-Domain Formulation”, Submitted to IEEE Transactions
on Automatic Control, 2014 (conference version: CDC 2014).

2. G. Fazelnia et al., “Convex Relaxation for Optimal Distributed Control Problem — Part Il: Lyapunov Formulation and Case Studies”, Submitted to IEEE 29
Transactions on Automatic Control, 2014 (conference version: Allerton 2014).
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Sparsification

L What if the optimization under study is not sparse?

Polynomial Optimization — Dense QCQP — Sparse QCQP

Technique 1: Vertex Duplication Procedure

£Ij — (;E’-’f_] . ;I'«g_g} S.1. i1 = T2

Technique 2: Edge Elimination Procedure

£ j — 21 — <

1.
2.

O The treewidth can be reduced to 1 thru sparsification.

Theorem: Every polynomial optimization has a quadratic formulation whose SDP relaxation has
a solution with rank 1 or 2.

O Sparsification is useful for finding approximation ratio but the price is loss of performance.

R. Madani, G. Fazelnia, J. Lavaei, “Rank-2 Solution for Semidefinite Relaxation of Arbitrary Polynomial Optimization Problems,” Preprint, 2014.
S. Sojoudi, R. Madani, G. Fazelnia and J. Lavaei, “Graph-Theoretic Algorithms for Solving Polynomial Optimization Problems,” CDC 2014.
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Conclusions

Problem: Find a near-global solution together with
a global optimality guarantee

ftx‘,

b L e 4w e ow @

Approach: Graph-theoretic convexification

U Generalized weighted graph: Connection between complexity and structure
0 OS and treewidth: Connection between rank and sparsity

U Non-convexity diagnosis: Graph-based localization

U Penalized SDP: Obtaining a near-global solution

[ Scalable algorithm: High-dimensional sparse SDP

O Sparsification: Rank reduction for dense optimization

O Applications: Power optimization and stochastic control

32



Future Work: Incomplete List

Energy:
O Find approximation ratio for power optimization (99% ?).

O Study rounding techniques for mixed-integer problems (UC-OPF).
O Software development

U Collaboration with industry

Theory:

O Systematic rounding procedure.
O Connection to sum-of-squares, valid inequalities, ...
O Stochastic problems and robust optimization

O Case studies: Hard graph problems

(J Compute approximation ratio (and infeasibility degree) based on low-rank optimization.

Applications in other areas:

 Big data, machine learning, societal problems, etc.
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