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Abstract—This paper is concerned with the design of an
efficient convex relaxation for the notorious problem of stochastic
optimal distributed control (SODC) problem. The objective is to
find an optimal structured controller for a dynamical system
subject to input disturbance and measurement noise. With no
loss of generality, this paper focuses on the design of a static
controller for a discrete-time system. First, it is shown that there
is a semidefinite programming (SDP) relaxation for this problem
with the property that its SDP matrix solution is guaranteed
to have rank at most 3. This result is due to the extreme
sparsity of the SODC problem. Since this SDP relaxation is
computationally expensive, an efficient two-stage algorithm is
proposed. A computationally-cheap SDP relaxation is solved in
the first stage. The solution is then fed into a second SDP
problem to recover a near-global controller with an enforced
sparsity pattern. The proposed technique is always exact for
the classical H2 optimal control problem (i.e., in the centralized
case). The efficacy of our technique is demonstrated on the
IEEE 39-bus New England power network, a mass-spring system,
and highly-unstable random systems, for which near-optimal
stabilizing controllers with optimality degrees above 90% are
designed under a wide range of noise levels.

I. INTRODUCTION

The area of decentralized control is created to address

the challenges arising in the control of real-world systems

with many interconnected subsystems. The objective is to

design a structurally constrained controller—a set of partially

interacting local controllers—with the aim of reducing the

computation or communication complexity of the overall con-

troller. The local controllers of a decentralized controller may

not be allowed to exchange information. The term distributed

control is often used in lieu of decentralized control in the

case where there is some information exchange between the

local controllers. It has been long known that the design of an

optimal decentralized (distributed) controller is a daunting task

because it amounts to an NP-hard optimization problem [1],

[2]. Great effort has been devoted to investigating this highly

complex problem for special types of systems, including

spatially distributed systems [3], [4], [5], [6], [7], dynamically

decoupled systems [8], [9], weakly coupled systems [10], and

strongly connected systems [11].

Due to the recent advances in the area of convex optimiza-

tion, the focus of the existing research efforts has shifted from

deriving a closed-form solution for the above control synthesis

problem to finding a convex formulation of the problem that

can be efficiently solved numerically [12], [13], [14], [15],

[16]. This has been carried out in the seminal work [17]

by deriving a sufficient condition named quadratic invariance,
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which has been generalized in [18] by deploying the concept

of partially order sets. These conditions have been further

investigated in several other papers [19], [20], [21]. A different

approach is taken in the recent papers [22] and [23], where

it has been shown that the distributed control problem can be

cast as a convex optimization for positive systems. A sparsity-

promoting technique is developed in [24].

There is no surprise that the decentralized control problem

is computationally hard to solve. This is a consequence of

the fact that several classes of optimization problems, in-

cluding polynomial optimization and quadratically-constrained

quadratic program as a special case, are NP-hard in the worst

case. Due to the complexity of such problems, various convex

relaxation methods based on linear matrix inequality (LMI),

semidefinite programming (SDP), and second-order cone pro-

gramming (SOCP) have gained popularity [25], [26]. These

techniques enlarge the possibly non-convex feasible set into

a convex set characterizable via convex functions, and then

provide the exact or a lower bound on the optimal objective

value. The SDP relaxation usually converts an optimization

with a vector variable to a convex optimization with a matrix

variable, via a lifting technique. The exactness of the relax-

ation can then be interpreted as the existence of a low-rank

(e.g., rank-1) solution for the SDP relaxation. Several papers

have studied the existence of a low-rank solution to matrix

optimizations with linear or nonlinear (e.g., LMI) constraints.

Consider the design of a structured controller for a deter-

ministic system. It is shown in [27] that this problem admits

an SDP relaxation in the finite-horizon case with the property

that the rank of its SDP is upper bounded by 4. This result is

extended to an infinite-horizon control problem in [28]. The

current paper significantly generalizes our previous results in

multiple directions. The main focus of this work is on the

stochastic optimal distributed control (SODC) problem, where

the system is subject to input disturbance and measurement

noise. First, we show that the SODC problem has an SDP

relaxation such that the rank of its SDP solution is at most 3.

This solution can be converted to a near-global controller, but

the SDP problem is computationally expensive. The main con-

tribution of this work is to develop an efficient computational

method to find a high-performance controller. To this end, we

offer a two-stage convex program, where a computationally-

cheap SDP relaxation is solved in the first stage and its solution

is then passed to a second convex optimization to retrieve

a solution. The superiority of this technique is discussed in

detail. In the extreme case, this technique correctly solves

the classical (centralized) H2 optimal control problem, as a

substitute for the Riccati equations. The proposed algorithm

is applied to the frequency control of a New England power

network, a mass-spring system, and several highly-unstable
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random systems.

This paper is organized as follows. The problem is formu-

lated in Section II. The main results of the paper, consisting of

an SDP relaxation as well as a two-stage convex program, is

developed in Section III. Two case studies on power networks

and mass-spring systems are provided in Section IV, followed

by simulations on random systems. Finally, some concluding

remarks are drawn in Section V.

Notations: R and S
n denote the sets of real numbers and n×n

symmetric matrices, respectively. rank{W} and trace{W}
denote the rank and trace of a matrix W . The notation

W � 0 means that W is symmetric and positive semidefinite.

Given a matrix W , its (l, m) entry is denoted as Wlm. The

superscript (·)opt is used to show the globally optimal value of

an optimization parameter. The symbols (·)T and ‖ · ‖ denote

the transpose and 2-norm operators, respectively. The notation

|x| shows the size of a vector x. The expected value of a

random variable x is shown as E{x}.

II. PROBLEM FORMULATION

Consider the discrete-time system
{

x[τ + 1] = Ax[τ ] + Bu[τ ] + Ed[τ ]
y[τ ] = Cx[τ ] + Fv[τ ]

τ = 0, 1, 2, ...

with the known matrices A, B, C , E, and F , where

• x[τ ] ∈ R
n, u[τ ] ∈ R

m and y[τ ] ∈ R
r denote the state,

input and output of the system.

• d[τ ] and v[τ ] denote the input disturbance and measure-

ment noise, which are assumed to be zero-mean white-

noise random processes.

The goal is to design an optimal distributed controller. With no

loss of generality and in order to simplify the presentation, we

focus on the static case where the objective is to design a static

controller of the form u[τ ] = Ky[τ ] under the constraint that

the controller gain K must belong to a given linear subspace

K ⊆ R
m×r . The set K captures the sparsity structure of

the unknown constrained controller u[τ ] = Ky[τ ] and, more

specifically, it contains all m × r real-valued matrices with

forced zeros in certain entries. This paper is mainly concerned

with the following problem.

Stochastic Optimal Distributed Control (SODC) problem:

Design a stabilizing static controller u[τ ] = Ky[τ ] to minimize

the cost function

lim
τ→+∞

E
(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
(1)

subject to the system dynamics and the controller requirement

K ∈ K, given positive-definite matrices Q and R.

III. MAIN RESULTS

Define two covariance matrices as below:

Σd = E{Ed[τ ]d[τ ]TET }, Σv = E{Fv[τ ]v[τ ]TF T } (2)

for every τ ∈ {0, 1, 2, ...}. In what follows, the SODC problem

will be formulated as a nonlinear optimization program.

Theorem 1. The SODC problem is equivalent to finding a

controller K ∈ K, a symmetric Lyapunov matrix P ∈ S
n,

and auxiliary matrices G ∈ S
n, L ∈ R

n×r and M ∈ S
r to

minimize the objective function

trace{PΣd + MΣv + KT RKΣv} (3)

subject to the constraints




G G (AG + BL)T LT

G Q−1 0 0
AG + BL 0 G 0

L 0 0 R−1



 � 0, (4a)

[
P I

I G

]
� 0, (4b)

[
M (BK)T

BK G

]
� 0, (4c)

L = KCG (4d)

Proof: A sketch of the proof will be provided in this

extended abstract. It is straightforward to verify that

x[τ ] = (A + BKC)τx[0]

+

τ−1∑

t=0

(A + BKC)tEd[τ − t − 1]

+

τ−1∑

t=0

(A + BKC)tBKFv[τ − t − 1]

(5)

for τ = 1, 2, .... On the other hand, since the controller under

design must be stabilizing, (A+BKC)τ approaches zero as τ

goes to +∞. In light of the above equation, it can be verified

that

E

{
lim

τ→+∞

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)}
=

= E

{
lim

τ→+∞

(
x[τ ]T (Q + CT KT RKC)x[τ ]

)}

= trace{PΣd + (BK)T P (BK)Σv + KT RKΣv}

(6)

where

P =

∞∑

t=0

(
(A + BKC)t

)T
(Q + CT KT RKC)(A + BKC)t

(7)

or equivalently

(A + BKC)T P (A + BKC) − P + Q + (KC)T R(KC) = 0,

(8a)

P � 0 (8b)

After pre- and post-multiplying (8a) with P−1 and using the

Schur complement formula, the constraints (8a) and (8b) can

be combined as




P−1 P−1 ST P−1(KC)T

P−1 Q−1 0 0
S 0 P−1 0

(KC)P−1 0 0 R−1



 � 0 (9)

where S = (A+BKC)P−1 (note that 0’s in the above matrix

are zero matrices of appropriate dimensions). By changing the
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variable P−1 to G and defining L as KCP−1, the following

observations can be made:

• The condition (9) is identical to the set of constraints (4a)

and (4d).

• The cost function (6) can be expressed as

trace{G−1Σd + (BK)T G−1(BK)Σv + KT RKΣv}
(10)

• Since P appears only once in the constraints of the

optimization problem (3)-(4) (i.e., the condition (4b)) and

the objective function of this optimization includes the

term trace{PΣd}, the optimal value of P is equal to G−1.

• Similarly, the optimal value of M is equal to

(BK)T G−1(BK).

The proof follows from the above facts.

The SODC problem is cast as a (deterministic) nonlinear

program in Theorem 1. This optimization problem is non-

convex due only to the complicating constraint (4d) . More

precisely, the removal of this nonlinear constraint makes the

optimization problem a semidefinite program (note that the

term KT RK in the objective function is convex due to the

assumption R � 0).

The traditional H2 optimal control problem (i.e., in the

centralized case) can be solved using Riccati equations. It

will be shown in the next theorem that the abovementioned

semidefinite program correctly solves the centralized H2 op-

timal control problem.

Theorem 2. Consider the special case where C = I, Σv = 0
and K contains the set of all unstructured controllers. Then,

the SODC problem has the same solution as the convex

optimization problem obtained from the nonlinear optimiza-

tion (3)-(4) by removing its non-convex constraint (4d).

Proof: It is easy to verify that a solution (Kopt, P opt, Gopt,

Lopt, M opt) of the convex problem stated in the theorem can be

mapped to the solution (Lopt(Gopt)−1, P opt, Gopt, Lopt, M opt)
of the non-convex problem (3)-(4) and vice versa (recall that

C = I and Σv = 0 by assumption). This completes the proof.

Theorem 2 states that a classical optimal control problem

can be precisely solved via a convex relaxation of the nonlinear

optimization (3)-(4) by eliminating its constraint (4d). How-

ever, this simple convex relaxation does not work satisfactorily

for a general control structure K. To design a better relaxation,

define

w :=
[

1 h vec{CG}
]T

(11)

where h is a row vector containing the variables (free pa-

rameters) of K, and vec{CG} is a row vector containing all

entries of G. It is possible to write the bilinear matrix term

KCG as a linear function of the entries of the parametric

matrix wwT . Hence, by introducing a new matrix variable W

playing the role of wwT , the nonlinear constraint (4d) can

be rewritten as a linear constraint in term of W . Now, one

can relax the mapping constraint W = wwT to W � 0 and

another constraint stating that the first column of W is equal

to w. This convex problem is referred to as SDP relaxation

of the SODC in this work. In the case where the relaxation

Fig. 1: The sparsity graph for the SDP relaxation of the SODC problem
in the case where K consists of diagonal matrices (vertex 1 is ignored to
improve the legibility of the paper). Note that (CG)ij’s denote the entries of

CG.

has the same solution as SODC, the relaxation is said to be

exact.

Theorem 3. Consider the case where K contains only diago-

nal matrices. The following statements hold regarding the SDP

relaxation of the SODC problem:

i) The relaxation is exact if it has a solution (Kopt, P opt,

Gopt, Lopt, M opt, W opt) such that rank{W opt} = 1.

ii) The relaxation always has a solution (Kopt, P opt, Gopt,

Lopt, M opt, W opt) such that rank{W opt} ≤ 3.

Proof: To study the SDP relaxation of the aforementioned

control problem, we need to define a sparsity graph G. Let η

denote the number of rows of W . The graph G has η vertices

with the property that two arbitrary disparate vertices i, j ∈
{1, 2, ..., η} are connected in the graph if Wij appears in at

least one of the constraints of the SDP relaxation other than the

global constraint W � 0. For example, vertex 1 is connected

to all remaining vertices of the graph. The graph G with its

vertex 1 removed is depicted in Figure 1. This graph is acyclic

and therefore the treewidth of the graph G is at most 2. Hence,

the SDP relaxation has a matrix solution with rank at most

3 [29].

Theorem 3 states that the SDP relaxation of the SODC

problem has a low-rank solution. However, it does not imply

that every solution of the relaxation is low-rank. It follows

from our recent work [29] that there are infinitely many convex

programs that are able to turn a high-rank solution of the SDP

relaxation into a matrix solution with rank at most 3 for the

design of a diagonal controller. Theorem 3 will be generalized

below.

Proposition 1. The SODC problem has a convex relaxation

with the property that its exactness amounts to the existence

of a rank-1 matrix solution W opt. Moreover, it is always

guaranteed that this relaxation has a solution such that

rank{W opt} ≤ 3.

Proof: As discussed in our recent paper [28], there exist

two binary matrices Φ1 and Φ2 such that K = Φ1diag{k}Φ2

for every K ∈ K, where diag{k} denotes a diagonal matrix

whose diagonal contains the free (variable) entries of K.

Hence, the design of a structured control gain K for the system
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(A, B, C, E, F ) amounts to the design of a diagonal control

gain diag{k} for the system (A, BΦ1, Φ2C, E, Φ2F ) (after

updating the matrices Q and R accordingly). It follows from

Theorem 3 that the SDP relaxation of the SODC problem

equivalently formulated for the new system satisfies the prop-

erties of this theorem.

In this section, it has been shown that the SODC problem

has an SDP relaxation with a low-rank solution. Nevertheless,

there are many SDP relaxations with this property and it is

desirable to find the one offering the highest lower bound

on the optimal solution of the SODC problem. To this end,

the abovementioned SDP relaxation should be reformulated

in such a way that the diagonal entries of the matrix W

are incorporated into as many constraints of the problem as

possible in order to indirectly penalize the rank of the matrix

W . This idea will be flourished in the next section, but for a

computationally-cheap relaxation of the SOCP problem.

A. Computationally-Cheap SDP Relaxation

The proposed SDP relaxation has a high dimension for

a large-scale system, which makes it less interesting for

computational purposes. Moreover, the quality of its opti-

mal objective value can be improved using some indirect

penalty technique. The objective of this section is to offer a

computationally-cheap SDP relaxation for the SOCP problem,

whose solution outperforms that of the previous SDP relax-

ation. For this purpose, Consider an invertible matrix Φ such

that

CΦ =
[

Λ 0
]

(12)

where Λ is a diagonal matrix and “0” is an r × (n − r) zero

matrix. Define also

K2 = {KKT | K ∈ K} (13)

Indeed, K2 captures the sparsity pattern of the matrix KKT .

For example, if K consists of block-diagonal (rectangular)

matrix, K2 will also include block-diagonal (square) matrices.

Let µ1 ∈ R and µ2 ∈ R be two positive numbers such that

Q � µ1 × Φ−T Φ−1, R � µ2 × Λ2 (14)

where Φ−T denotes the transpose of the inverse of Φ. Define

Q̂ := Q − µ1 × Φ−T Φ−1 and R̂ := R − µ2 × Λ2.

Computationally-Cheap SDP Relaxation: This optimization

problem is defined as the minimization of

trace{PΣd + MΣv + µ2W33Σv + KT R̂KΣv} (15)

subject to the constraints




G −W22 G (AG + BL)T LT

G Q̂−1 0 0
AG + BL 0 G 0

L 0 0 R−1



 � 0, (16a)

[
P I

I G

]
� 0, (16b)

[
M (BK)T

BK G

]
� 0, (16c)

W :=





In Φ−1G

[
ΛKT

0

]

GΦ−T
W22 LT

[
KΛ 0

]
L W33



 � 0, (16d)

K ∈ K, (16e)

W33 ∈ K2, (16f)

with the parameter set {K, L, G, P, M, W}, where the depen-

dent variables W22 and W33 represent two blocks of W.

The following remarks can be made regarding the

computationally-cheap SDP relaxation:

• The constraint (16a) corresponds to the Lyapunov in-

equality, where W22 in its first block aims to play the

role of P−2.

• The constraint (16b) ensures that the relation P = G−1

occurs at optimality (at least for one of the solution of

the problem).

• The constraint (16c) ensures that the relation M =
(BK)T G−1(BK) occurs at optimality

• The constraint (16d) is a surrogate for the only compli-

cating constraint of the SODC problem, i.e., L = KCG.

• Since no non-convex rank constraint is imposed in order

to maintain the convexity of the relaxation, a possible

rank constraint is compensated in various ways. More

precisely, the entries of W are constrained in the objec-

tive function (15) through the term trace{µ2W33Σv}, in

the first block of the constraint (16a) through the term

G − W22, and also via the constraints (16e) and (16f).

• The proposed relaxation takes advantage of the sparsity of

not only K, but also KKT (through the constraint (16f)).

Theorem 4. The computationally-cheap SDP relaxation is

a convex relaxation of the SODC problem, whose optimal

cost is greater than or equal to that of the (regular) SDP

relaxation with the variable set (K, L, P, G, M, W ). Fur-

thermore, the relaxation is exact if it possesses a solution

(Kopt, Lopt, P opt, Gopt,M opt, Wopt) such that rank{Wopt} = n.

Proof: Since the proof is long, it is omitted in this

extended abstract.

Once the computationally-cheap SDP relaxation is solved, a

controller K must be recovered. This can be achieved in two

ways as explained below.

Direct Recovery Method: A near-optimal controller K̂ for the

SODC problem is chosen to be equal to the optimal controller

Kopt obtained from the computationally-cheap SDP relaxation.

Indirect Recovery Method: Let (Kopt, Lopt, P opt, Gopt, M opt,
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Fig. 2: A mass-spring system with two masses

Fig. 3: Two control topologies studied for the mass-spring system: (a)
localized, (b) decentralized.

W
opt) denote a solution of the computationally-cheap SDP

relaxation. A near-optimal controller K̂ for the SODC problem

is recovered by solving a convex program with the variables

K ∈ K and γ ∈ R to minimize the cost function

ε × γ + trace{(BK)T (Gopt)−1(BK)Σv + KT RKΣv} (17)

subject to the constraint



(Gopt)−1 − Q + γIn (A + BKC)T (KC)T

(A + BKC) Gopt 0
(KC) 0 R−1



 � 0

(18)

where ε is a pre-specified nonnegative number.

The direct recovery method assumes that the controller Kopt

obtained from the computationally-cheap SDP relaxation is

near-optimal, whereas the indirect method assumes that the

controller Kopt might be quite wrong while the inverse of the

Lyapunov matrix is near-optimal. The indirect method is built

on the SDP relaxation by fixing G at its optimal value and

then perturbing Q as Q − γIn to facilitate the recovery of a

stabilizing controller (it may rarely happen that a stabilizing

controller can be recovered from a solution Gopt if γ is set

to zero). Although none of the proposed recovery methods

is universally better than the other one, we have verified

in numerous simulation that the indirect recovery method

significantly outperforms the direct recovery method with a

high probability.

IV. SIMULATIONS RESULTS

The objective of this section is to elucidate the results of this

work on two physical systems and several random systems.

Note that the computation time for each SDP relaxation

studied below has been less than 2 seconds on a desktop

computer with an Intel Core i7 quad-core 3.4 GHz CPU and

16 GB RAM (using CVX and MOSEK).

A. Case Study I: Mass-Spring System

In this part, the aim is to evaluate the performance of

the proposed controller design technique on the Mass-Spring

system, as a classical physical system. Consider a mass-spring

system consisting of N masses. This system is exemplified

in Figure 2 for N = 2. The system can be modeled in the

continuous-time domain as

ẋc(t) = Acxc(t) + Bcuc(t) (19)

where the state vector xc(t) can be partitioned as

[o1(t)
T o2(t)

T ] with o1(t) ∈ R
n equal to the vector of

positions and o2(t) ∈ R
n equal to the vector of velocities of

the N masses. In this example, we assume that N = 10 and

adopt the values of Ac and Bc from [24]. The goal is to design

a static sampled-data controller with a pre-specified structure

(the controller is composed of a sampler, a static discrete-

time controller and a zero-order holder). To this end, we first

discretize the system with the sampling time of 0.1 seconds.

Two control structures of “decentralized” and “localized” are

to be studied for the matrix K ∈ R
10×20, which are shown

in Figure 3. The entries marked as “*” are the free entries of

the rectangular matrix K under design. We assume that the

system is subject to both input disturbance and measurement

noise. Consider the case where Σd = I and Σv is a scalar

multiple of the identity matrix such that the value of the

identical diagonal entries of Σv could vary from 0 to 5. Using

the computationally-cheap SDP relaxation in conjunction with

the indirect recovery method, a near-optimal controller was

designed for each of aforementioned control structures under

various noise levels. The results are reported in Figure 4, with

“optimality degree” defined as:

Optimality degree (%) = 100 −
upper bound - lower bound

upper bound
× 100

where “upper bound” and ‘lower bound” denote the cost of

the recovered near-optimal controller and the optimal objective

of the SDP relaxation, respectively. The structured controllers

designed using the SDP relaxation were all stable with opti-

mality degrees higher than 95% in the worst case and close

to 99% in many cases.

B. Case Study II: Frequency Control in Power Systems

In this part, the performance of the computationally-cheap

SDP relaxation combined with the indirect recovery method

will be evaluated on the problem of designing an optimal

distributed frequency control for IEEE 39-Bus New England

Power System. The one-line diagram of this system is shown

in Figure 5. The main objective of the unknown controller is to

optimally adjust the mechanical power input to each generator

as well as being structurally constrained by a user-defined

communication topology. This pre-determined communication

topology specifies which generators exchange their rotor angle

and frequency measurements with one another.

In this example, we stick with a simple classical model of

the power system. However, our result can be deployed for a

complicated high-order model with nonlinear terms (our SDP

relaxation may be revised to handle possible nonlinear terms

in the dynamics). To derive a simple state-space model of the

power system, we start with the widely used per-unit swing

equation

Miθ̈i + Diθ̇i = PMi − PEi (20)

where θi denotes the voltage (or rotor) angle at bus i (in rad),

PMi is the mechanical power input to the generator at bus i

(in per unit), PEi is the electrical active power injection at bus

i (in per unit), Mi is the inertia coefficient of the generator at

bus i (in pu-sec2/rad), and Di is the damping coefficient of
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(a) Optimality degree for decentralized case
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(b) Near-optimal cost for decentralized case
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(c) Optimality degree for distributed case
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(d) Near-optimal cost for distributed case

Fig. 4: The optimality degree and the optimal cost of the near-optimal controller designed for the mass-spring system for two different control structures.
The noise covariance matrix Σv is assumed to be a multiple of the identity matrix and the x-axis in each figure shows the value of the identical diagonal

entries of Σv .
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Fig. 5: Single line diagram of IEEE 39-Bus New England Power System.

the generator at bus i (in pu-sec/rad) [30]. The electrical real

power PEi in (20) comes from the nonlinear AC power flow

equations:

PEi =

n∑

j=1

|Vi||Vj| [ Gij cos(θi − θj) + Bij sin(θi − θj) ]

(21)

where n denotes the number of buses in the system, Vi is the

voltage phasor at bus i, θi is the voltage (or rotor) angle at bus

i, Gij is the line conductance, and Bij is the line susceptance.

To simplify the formulation, a commonly-used technique is

to approximate equation (21) by its corresponding DC power

flow equation stated below:

PEi =

n∑

j=1

Bij(θi − θj) (22)

The approximation error is often small in practice due to the

common practice of power engineering, which rests upon the

following assumptions:

• For most networks, G � B −→ G = 0
• For most neighbouring buses, |θi − θj | ≤ (10o to 15o)

−→ sin(θi − θj) ≈ θi − θj

−→ cos(θi − θj) ≈ 1
• In per unit, |Vi| is close to 1 (0.95 to 1.05)

−→ |Vi||Vj| ≈ 1

It is possible to rewrite (22) into the matrix format PE =
Lθ, where PE and θ are the vectors of real power injections

and voltage (or rotor) angles at all generator buses (by remov-

ing the load buses and the intermediate zero buses). In this
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equation, L denotes the Laplacian matrix and can be found as

follows [31]:

Lii =

n̄∑

j=1,j 6=i

BKron
ij if i = j

Lij = −BKron
ij if i 6= j

(23)

where BKron is the susceptance of the Kron reduced admit-

tance matrix Y Kron defined as

Y Kron
ij = Yij −

YikYkj

Ykk

(i, j = 1, 2, . . . , n and i, j 6= k)

(24)

where k is the index of the non-generator bus to be eliminated

from the admittance matrix and n̄ is the number of generator

buses. Note that the Kron reduction method aims to eliminate

the static buses of the network because the dynamics and

interactions of only the generator buses are of interest [32].

By defining the rotor angle state vector as θ = [θ1, . . . , θn̄]T

and the frequency state vector as w = [w1, . . . , wn̄]T and by

substituting the matrix format of PE into (20), the state space

model of the swing equation used for frequency control in

power systems could be written as

[
θ̇

ẇ

]
=

[
0n̄×n̄ In̄

−M−1L −M−1D

][
θ

w

]
+

[
0n̄×n̄

M−1

]
PM

y =

[
θ

w

]
(25)

where M = diag(M1, . . . , Mn̄) and D = diag(D1, . . . , Dn̄).
It is assumed that both rotor angle and frequency are available

for measurement at each generator (implying that C = I2n̄).

This is a reasonable assumption with the recent advances in

Phasor Measurement Unit (PMU) technology [33].

By substituting the per-unit inertia (M) and damping (D)

coefficients for the 10 generators of IEEE 39-Bus system [34]

based on the data in Table I, the continuous-time state space

model matrices Ac, Bc and Cc can be found. The system is

then discretized to the discrete-time model matrices A, B and

C with the sampling time of 0.2 second. The initial values

of the rotor angle (θ0) were calculated by solving power (or

load) flow problem for the system using MATPOWER [35].

In practice, the rotor speed does not vary significantly from

synchronous speed and thus the initial frequency (w0) was

assumed to be 1.0 per unit. Both θ0 and w0 are reported for

each generator in Table I.

The 39-bus system has 10 generators, labeled as G1, G2, ...,

G10. Four communication topologies are considered in this

work: decentralized, localized, star, and ring. In order to better

understand how the interactions among the 10 generators in the

system are related to the communication structures, the Kron

reduced network of the system is visualized by the weighted

graph shown in Figure 6. In a fully decentralized structure,

none of the generators communicate with each other. In a

localized communication structure, the generators may only

communicate with their close neighbors. In a star topology,

a single generator is able to communicate with all other

Bus Gen M D θ0 w0

30 G10 4 5 -0.0839 1.0

31 G2 3 4 0.0000 1.0

32 G3 2.5 4 0.0325 1.0

33 G4 4 6 0.0451 1.0

34 G5 2 3.5 0.0194 1.0

35 G6 3.5 3 -0.0073 1.0

36 G7 3 7.5 0.1304 1.0

37 G8 2.5 4 0.0211 1.0

38 G9 2 6.5 0.127 1.0

39 G1 6 5 -0.2074 1.0

TABLE I: Generators’ data and initial values (in per unit) for IEEE 39-Bus
New England Power System.

G10

G2

G3G4

G5

G6

G7

G8 G9

G1

Fig. 6: Weighted graph of the Kron reduced network of IEEE 39-Bus New

England Power System. Weights (thicknesses) of all edges are normalized to
the minimum off-diagonal entry of the susceptance BKron.

generators in the system. The ring communication structure—

forming a closed path—aims to provide communications be-

tween neighbors. These topologies are visualized in Figure 7.

The locations of the generators in the figure are based on the

exact coordinates of the power plants named in [36]. Note

that G1 represents a group of generators, but it is considered

as a single node near the border between New York and

Connecticut in this map. G4 and G5 are very close in distance,

but G4 was somewhat shifted from its real coordinates to make

the communication link between them visible in this map.

To conduct some experiments, assume that Q = I, R =
0.1I, Σd = I, and Σv is a multiple of the identity matrix

where the value of its identical diagonal entries could vary

from 0 to 15. Using the proposed SDP relaxation, near-

optimal controllers were designed for each of the four forgo-

ing communication topologies under various levels of noise.

The designed structured controllers were always stable with

optimality degrees always higher than 90%. The findings are

reported in Figures 8 and 9

C. Random Systems

The goal of this example is to test the efficiency of the

computationally-cheap SDP relaxation combined with the in-

direct recovery method on 100 highly-unstable random sys-

tems. Assume that n = m = r = 25, and that C, Q, R

are identity matrices of appropriate dimensions. Suppose that
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(a) Decentralized (b) Localized

(c) Ring (d) Star Topology (G10 in center)

Fig. 7: Four communication topologies studied for IEEE 39-bus system.

Σd = I and Σv = 0. To make the problem harder, assume that

the controller under design must satisfy the hard constraint

trace{KKT } ≤ 2 (to avoid a high gain K). We generated

hundred random tuples (A, B,K) according to the following

rules:

• The entries of A were uniformly chosen from the interval

[0, 0.5] at random.

• The entries of B were uniformly chosen from the interval

[0, 1] at random.

• Each entry of the matrix K was enforced to be zero with

the probability of 70%.

Note that although the matrices A and B are nonnegative, the

matrix K under design can have both positive and negative

entries. The randomly generated systems are highly unstable

with the maximum absolute eigenvalue as high as 6 (instability

for discrete-time systems requires a maximum magnitude less

than 1). Although the control of such systems was not easy and

the control structure was enforced to be 70% sparse with an

enforced sparsity pattern, the proposed technique was always

able to design a “stabilizing” near-optimal controller with an

optimality degree between 50% and 75%. The results are

reported in Figure 10.

V. CONCLUSIONS

This paper studies the stochastic optimal distributed control

(SODC) problem for discrete-time systems. The objective is

to design a (static) distributed controller with a pre-determined

structure to minimize the expected value of a quadratic cost

functional. We cast the SODC problem as a rank-constrained

optimization with only one non-convex constraint requiring the

rank of a variable matrix to be 1. Dropping the rank constraint

leads to a semidefinite programming (SDP) relaxation of the

SODC problem. It is shown that the nonlinearity of the SODC

problem appears in such a sparse way that its SDP relaxation

has a matrix solution with rank at most 3. This low-rank

solution helps to find a near-global solution of the SODC

problem. Since the derived SDP relaxation is computationally

expensive, an efficient two-stage convex program is developed.

A computationally-cheap SDP relaxation is first solved, and

then part of the SDP solution is fed into a second convex

program to retrieve a near-global controller. This two-stage

optimization problem works as well as the Riccati equations

in the centralized case. The proposed technique is tested on

two physical networks and several random systems to show

the possibility of designing structured controllers with global

optimality degrees as high as 90%.
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Fig. 8: The optimality degree of the near-optimal controller designed for the power system for four different control structures. The noise covariance matrix
Σv is assumed to be a multiple of the identity matrix and the x-axis in each figure shows the value of the identical diagonal entries of Σv .
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Fig. 9: The optimal cost of the near-optimal controller designed for the power system for four different control structures. The noise covariance matrix Σv

is assumed to be a multiple of the identity matrix and the x-axis in each figure shows the value of the identical diagonal entries of Σv .
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Fig. 10: The optimality degree and the stability level (maximum of the absolute eigenvalues) associated with 100 near-optimal sparse controllers designed
for 100 highly-unstable random systems.
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