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Abstract—Historically, centrally computed algorithms have
been the primary means of power system optimization and con-
trol. With increasing penetrations of distributed energy resources
requiring optimization and control of power systems with many
controllable devices, distributed algorithms have been the subject
of significant research interest. This paper surveys the literature
of distributed algorithms with applications to optimization and
control of power systems. In particular, this paper reviews
distributed algorithms for offline solution of optimal power flow
(OPF) problems as well as online algorithms for real-time solution
of OPF, optimal frequency control, optimal voltage control, and
optimal wide-area control problems.

Index Terms—Distributed optimization, online optimization,
electric power systems

I. INTRODUCTION

CENTRALIZED computation has been the primary way
that optimization and control algorithms have been ap-

plied to electric power systems. Notably, independent system
operators (ISOs) seek a minimum cost generation dispatch
for large-scale transmission systems by solving an optimal
power flow (OPF) problem. (See [1]–[8] for related litera-
ture reviews.) Other control objectives, such as maintaining
scheduled power interchanges, are achieved via an Automatic
Generation Control (AGC) signal that is sent to the generators
that provide regulation services.

These optimization and control problems are formulated
using network parameters, such as line impedances, system
topology, and flow limits; generator parameters, such as cost
functions and output limits; and load parameters, such as an
estimate of the expected load demands. The ISO collects all
the necessary parameters and performs a central computation
to solve the corresponding optimization and control problems.

With increasing penetrations of distributed energy resources
(e.g., rooftop PV generation, battery energy storage, plug-in
vehicles with vehicle-to-grid capabilities, controllable loads
providing demand response resources, etc.), the centralized
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paradigm most prevalent in current power systems will poten-
tially be augmented with distributed optimization algorithms.
Rather than collecting all problem parameters and performing
a central calculation, distributed algorithms are computed
by many agents that obtain certain problem parameters via
communication with a limited set of neighbors. Depending on
the specifics of the distributed algorithm and the application of
interest, these agents may represent individual buses or large
portions of a power system.

Distributed algorithms have several potential advantages
over centralized approaches. The computing agents only have
to share limited amounts of information with a subset of
the other agents. This can improve cybersecurity and reduce
the expense of the necessary communication infrastructure.
Distributed algorithms also have advantages in robustness with
respect to failure of individual agents. Further, with the ability
to perform parallel computations, distributed algorithms have
the potential to be computationally superior to centralized
algorithms, both in terms of solution speed and the maxi-
mum problem size that can be addressed. Finally, distributed
algorithms also have the potential to respect privacy of data,
measurements, cost functions, and constraints, which becomes
increasingly important in a distributed generation scenario.

This paper surveys the literature of distributed algorithms
with applications to power system optimization and control.
This paper first considers distributed optimization algorithms
for solving OPF problems in offline applications. Many dis-
tributed optimization techniques have been developed con-
currently with new representations of the physical models
describing power flow physics (i.e., the relationship between
the complex voltage phasors and the power injections). The
characteristics of a power flow model can have a large impact
on the theoretical and practical aspects of an optimization
formulation. Accordingly, the offline OPF section of this
survey is segmented into sections based on the power flow
model considered by each distributed optimization algorithm.
This paper then focuses on online algorithms applied to
OPF, optimal voltage control, and optimal frequency control
problems for real-time purposes.

Note that algorithms related to those reviewed here have
found a wide variety of power system applications in dis-
tributed optimization and control. See, for instance, surveys
on the large and growing literature relevant to distributed
optimization of electric vehicle charging schedules [9] and
demand response applications [10] as well as work on dis-
tributed solution of multi-period formulations for model pre-
dictive control problems, e.g., [11], [12]. With an emphasis
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on algorithmic developments, this paper does not attempt to
survey the power systems literature regarding all applications
of distributed optimization and control algorithms.

Throughout the paper, we use the following terminology:
1) Decentralized: purely local algorithms, i.e., no commu-

nication between agents;
2) Distributed: algorithms where each agent communi-

cates with its neighbors, but there is not a centralized
controller;

3) Hierarchical: algorithms where computations are done
by agents that communicate with other agents at a higher
level in a hierarchical structure, eventually leading to a
centralized controller;

4) Centralized: Each agent communicates with a central-
ized controller that performs computations and sends
new commands.

This paper is organized as follows. Section II overviews
background material: the power flow equations (along with
various relaxations and approximations), the OPF problem,
and common distributed optimization techniques. Sections III
reviews distributed algorithms for offline OPF problems. Sec-
tion IV summarizes the literature of online algorithms for
solving OPF, optimal frequency control, and optimal voltage
control problems. Section V concludes the paper.

II. OVERVIEW OF BACKGROUND MATERIAL

This section overviews the power flow equations, presents
the OPF problem, and summarizes several distributed opti-
mization techniques that are used by a variety of algorithms.

A. Power Flow Representations

This section summarizes the power flow equations and some
relaxations and approximations which are relevant to existing
distributed optimization techniques.

Consider an n-bus electric power system, where N :=
{1, . . . , n} denotes the set of buses. Let L denote the set of
lines. The network admittance matrix containing the electrical
parameters and topology information is denoted Y := G+jB,
where j :=

√
−1. Define ( · ) as the complex conjugate.

For notational brevity and to match the development of
many of the distributed optimization approaches that are
reviewed in this paper, the power flow equations given here use
a balanced single-phase-equivalent network representation. An
unbalanced three-phase representation is more appropriate for
some applications, such as models of distribution networks.
Many of the algorithms surveyed in this paper could be
extended to an unbalanced three-phase power flow model.

Each bus has an associated voltage phasor as well as active
and reactive power injections. The voltage phasors are denoted
V ∈ Cn, with polar coordinate representation |V | ejθ =
|V |∠θ, where |V | > 0 ∈ Rn and θ ∈ (−180◦, 180◦]n. Each
bus i ∈ N has active and reactive power injections Pi + jQi,
P,Q ∈ Rn.

The power flow equations are

Pi + jQi = Vi

n∑
k=1

YikV k. (1a)

Squared voltage magnitudes are

vi := ViV i = |Vi|2 . (1b)

Splitting real and imaginary parts of (1) and using polar
voltage coordinates yields

Pi = |Vi|
n∑
k=1

|Vk| (Gik cos (θi − θk) +Bik sin (θi − θk))

(2a)

Qi = |Vi|
n∑
k=1

|Vk| (Gik sin (θi − θk)−Bik cos (θi − θk))

(2b)

As an alternative to (2), balanced radial distribution net-
works can be represented using the DistFlow model [13].
Unlike the model (2), the DistFlow model implicitly assumes
a directed graph with an arbitrary orientation. We will use
(i, j) and i → j interchangeably to denote the directed line
from bus i to bus j. Define the active and reactive sending-end
power flows on the line from bus i to bus k as Pik and Qik,
respectively (note that we abuse notation to use Pi and Qi
to denote nodal injections and Pik and Qik to denote branch
flows). Denote by `ik the squared magnitude of the current
flow from bus i to bus k. The DistFlow model is

Pik = rik`ik − Pk +
∑

m:k→m

Pkm (3a)

Qik = xik`ik −Qk +
∑

m:k→m

Qkm (3b)

vk = vi − 2 (rikPik + xikQik) +
(
r2ik + x2ik

)
`ik (3c)

`ikvi = P 2
ik +Q2

ik (3d)

for each line (i, k) ∈ L with series impedance rik + jxik.1

The DistFlow model (3) fully represents the power flows
for a balanced radial network. However, (3) is a relaxation for
mesh network topologies due to the lack of a constraint en-
suring consistency in the voltage angles. Indeed, as explained
in [14], [15], if a set of non-linear equations, called the cycle
condition, is added to (3), the resulting model is equivalent
to the models (1) and (2) for general mesh networks, in the
sense that there is a bijection between their solution sets [16]–
[18]. Hence any power flow analysis or optimization problem
can be equivalently posed in any of these models. The cycle
condition is vacuous for radial networks.

Use of any of the power flow models (1), (2), or (3) results
in non-convex optimization problems that can be difficult to
directly handle in distributed optimization algorithms. There-
fore, many algorithms have focused on linear approximations
and convex relaxations of the power flow equations.

The most commonly used linear approximation is the DC
power flow model [19], which is based on several assumptions:

a. Reactive power flows can be neglected.
b. The lines are lossless (i.e., G ≈ 0) and shunt elements

can be neglected.
c. The voltage magnitudes at all buses are approximately

equal, so |Vi| ≈ 1 at all buses i ∈ N .

1The DistFlow model can be extended to more general line models with
shunt admittances, non-zero phase shifts, and off-nominal voltage ratios.
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d. Angle differences between connected buses are small
such that sin (θi − θk) ≈ θi − θk, ∀ (i, k) ∈ L.

Applying these assumptions to (2) yields the DC power flow
model: ∑

(i,k)∈L

Bik (θi − θk) = Pi ∀i ∈ N (4)

Distribution networks typically violate these assumptions,
which motivates the development of alternate linearizations.
One approach that is relevant to distributed optimization tech-
niques performs a linearization around the “no-load” voltage
profile under the assumptions of negligible shunt impedances
and near-nominal voltage magnitudes. The voltage magnitudes
can then be approximated as functions of the active and
reactive power injection vectors P and Q:

|V | = 1 +RP +XQ ∀i ∈ N (5)

where Y−1 := R+ jX. See [20]–[22] for further details.
Alternatively, another linear approximation can be formu-

lated by neglecting the losses in the DistFlow model (setting
`jk = 0 in (3)) to obtain the Linearized DistFlow model [23]:

Pik = −Pk +
∑

m:k→m

Pkm (6a)

Qik = −Qk +
∑

m:k→m

Qkm (6b)

vi = vk + 2 (rikPik + xikQik) (6c)

for each line (i, k) ∈ L.
The linearizations (4), (6), and (5) approximate the power

flow equations. Alternative approaches form convex relax-
ations of the power flow equations. Convex relaxations enclose
the non-convex feasible spaces associated with the power flow
equations in a larger space. Convex relaxations bound the
optimal objective value for the original non-convex problem
and provide sufficient conditions for certifying problem in-
feasibility. Certain convex relaxations also yield the globally
optimal decision variables for some optimization problems.

We next present two convex relaxations of the power flow
equations: a semidefinite programming (SDP) relaxation of
the model (1) for general networks [24], [25], and a second-
order cone programming (SOCP) relaxation of the DistFlow
model (3) for radial networks [14], [15], [26]. SOCP relax-
ations are also proposed in [27], [28] for the model (1). See
the tutorial [17], [18] on semidefinite relaxations of OPF for
extensive references. See also [29]–[31] for generalizations
and convex relaxation approaches as well as [30] for a
comparison of various relaxations.

The SDP relaxation is derived by formulating a rank-one
matrix W = V V H ∈ Cn×n, where ( · )H is the complex
conjugate transpose operator. The power flow equations (1)
are linear in the entries of W. Let ei ∈ Rn denote the ith

standard basis vector. Define the matrices

Hi :=
YHeie

T
i + eie

T
i Y

2
(7a)

H̃i :=
YHeie

T
i − eieTi Y
2j

(7b)

where ( · )T is the transpose operator. An SDP relaxation of (1)
is formed by relaxing the non-convex rank constraint to a
positive semidefinite matrix constraint:

Pi + jQi = tr
(
HiW

)
+ jtr

(
H̃iW

)
(8a)

|Vi|2 = tr
(
eie

T
i W

)
(8b)

W � 0 (8c)

where tr ( · ) is the matrix trace operator and � indicates
positive semidefiniteness. If a solution to an associated op-
timization problem has rank (W) = 1, the SDP relaxation is
exact and yields globally optimal solutions. Specifically, let
η denote a unit-length eigenvector of W, rotated such that
∠η1 = 0 to set the angle reference at bus 1, with associated
non-zero eigenvalue λ. The globally optimal voltage phasors
are then V ∗ :=

√
λ η. If rank (W) > 1, the SDP relaxation

does not directly provide globally optimal decision variables,
but does yield a bound on the optimal objective value of the
non-convex problem.

An SOCP relaxation can be formulated in terms of the Dis-
tFlow model (3) variables [14], [15], [26]. With the exception
of the quadratic equation (3d), the DistFlow model is linear in
the variables (Pi, Qi, vi, `ij , Pij , Qij). To construct a convex
SOCP relaxation of (3), replace the equality constraint (3d) by
an inequality:

`ikvi ≥ P 2
ik +Q2

ik ∀ (i, k) ∈ L (9)

The SOCP relaxation considered in this paper is (3a)–(3c),
(9), and it applies to single-phase balanced models of radial
networks.

Distribution systems are mostly radial and unbalanced.
The power flow model (1) can be generalized to an unbal-
anced network (radial or mesh topologies). By considering its
single-phase equivalent circuit, the SDP relaxation is extended
in [32], [33] to this generalized model. For radial networks, the
DistFlow model (3) is extended in [33] to unbalanced networks
and the SOCP relaxation (9) is extended to an SDP relaxation
using a chordal decomposition.

B. Optimal Power Flow Formulation

The OPF problem optimizes system performance according
to a specified objective function. Typical objective functions C
are based on generation cost (i.e., C :=

∑
i∈G c2,iP

2
Gi +

c1,iPGi + c0,i, where c2,i ≥ 0, c1,i, and c0,i are scalar
coefficients associated with the generator at bus i, PGi is the
generation at bus i, and G is the set of generator buses), losses
(i.e., C :=

∑
i∈N PGi), proximity to a desired voltage profile

(i.e., C :=
∑
i∈N

(
|Vi|2 − |V •i |

2
)2

, where |V •i | denotes a
desired voltage profile), or some combination of these.

Engineering constraints in the OPF problem limit the
power injections and voltage magnitudes, and the power flow
equations must be satisfied. Flow limits (typically based on
apparent power, active power, or current magnitude) are also
generally enforced. The specific line flow formulation depends
on the power flow model and type of flow. Denote fik (Vi, Vk)
as the appropriate flow function for line (i, k) ∈ L, with the
specific function descriptions excluded for brevity.
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The OPF problem considered in this paper is2

min C (10a)
subject to

Pmini ≤ Pi ≤ Pmaxi ∀i ∈ N (10b)

Qmini ≤ Qi ≤ Qmaxi ∀i ∈ N (10c)(
V mini

)2 ≤ |Vi|2 ≤ (V maxi )
2 ∀i ∈ N (10d)

fik (Vi, Vk) ≤ Imaxi,k ∀ (i, k) ∈ L (10e)

A power flow model (10f)

where “max” and “min” denote specified upper and lower
limits on the corresponding quantities and the power flow
model (10f) may be
• a non-convex formulation (1), (2), or (3);
• the DC power flow formulation (4), in which case the

reactive power and voltage magnitude constraints (10c)
and (10d) are ignored;

• the linear power flow representation (5) from [20], [21];
• the linearized DistFlow model (6);
• the SDP relaxation (8);
• the SOCP relaxation (3a)–(3c) and (9).
An advantage of solving OPF problems via a relaxation is

the ability to certify a solution as being globally optimal: if an
optimal solution of a relaxation satisfies an easily checkable
condition (e.g., if the optimal matrix for the SDP relaxation
is of rank 1 or if the optimal solution of the SOCP relaxation
attains equality in (9)), then a globally optimal solution to the
original non-convex OPF problem can be recovered. We say
in this case that the relaxation is exact. The SOCP relaxation
is much simpler computationally than the SDP relaxation, but
SDP relaxation is tighter for general networks. For single-
phase models of radial networks, however, they have the same
tightness, i.e., given any OPF instance, its SOCP relaxation is
exact if and only if its SDP relaxation is exact [16], [17].

Semidefinite relaxations of OPF, however, are generally
inexact [34]–[38]. This is not surprising as OPF has been
shown in [25], [39], [40] to be NP-hard in general. When
it is not exact, the solution of a relaxation does not satisfy
Kirchhoff’s laws, but it does provide a lower bound on
objective value of the non-convex OPF problem. For radial
networks, a set of sufficient conditions have been derived
under which SOCP (and hence SDP) relaxations of OPF are
always exact, e.g., [28], [41]–[47] for power flow models (1)
and (2), and [14], [15], [26], [48]–[50] for the DistFlow
model (3); see [18] for other references. These sufficient
conditions may not be satisfied in practical networks.

C. Summary of Distributed Optimization Techniques

This section next summarizes several distributed optimiza-
tion techniques. Adopting from the exposition in [51], the
first set of distributed optimization techniques are based on
augmented Lagrangian decomposition. These include Dual
Decomposition, the Alternating Direction Method of Mul-
tipliers with Proximal Message Passing, Analytical Target

2There exist a variety of generalizations and extensions of the OPF problem,
many of which are often used in practical applications. See, e.g., [7], [8].

Cascading, and the Auxiliary Problem Principle. The second
set of techniques are based on decentralized solution of the
Karush-Kuhn-Tucker (KKT) necessary conditions for local
optimality [52]. These include Optimality Condition Decom-
position and Consensus+Innovation. Two other approaches,
Gradient Dynamics and Dynamic Programming with Message
Passing, are discussed in Section III-C6.

Given its widespread use, the Alternating Direction Method
of Multipliers (ADMM) is given a more detailed overview,
while other decomposition techniques have a more summary
treatment. These techniques have a broad conceptual similarity
in that each considers distributed agents that pass information
among one another and perform local computations to solve
the overall problem. However, the details of the mathematical
structure (which information is shared, how the algorithms
ensure consistency between different subproblems, the spe-
cific computations performed by each agent, etc.) lead to
differences in practical performance and theoretical properties.
See, e.g., [51], [53] or the references below for more detailed
discussions of these techniques. See also [51], [54], [55] for
numerical comparisons between different distributed optimiza-
tion techniques in the context of power system optimization
problems, including empirical analyses of convergence rates.

1) Precursors to ADMM and Literature Survey: Keeping
in view our aim at providing a detailed survey of ADMM, we
first give a brief literature overview for ADMM in which we
describe the algorithm’s evolution. This is followed by two
sections where we detail the Dual Decomposition algorithm
and the ADMM algorithm.

The Alternating Direction Method of Multipliers first orig-
inated in the 1970s with the works of Mercier-Gabay [56],
Glowinski-Marocco [57], etc. Gabay and Eckstein-Bertsekas
first offered the convergence properties of the ADMM algo-
rithm in their works [58] and [59], respectively. In that same
work, Gabay also showed that there exists a more general-
ized method called the Douglas-Rachford method of splitting
monotone operators [60], [61], of which ADMM is a special
case. ADMM came into being as a result of the amalgamation
of two previously proposed algorithms: Dual Decomposition
(which is, in turn, based on the Dual Ascent algorithm) and
the Method of Multipliers for solving augmented Lagrangian
problems in a distributed manner (which is also similar in
flavor to the Gauss-Siedel iterative method). ADMM combines
the robustness of the augmented Lagrangian and the method
of multipliers with the distributed computational capability
of dual decomposition. Hestenes in [62] and Powell in [63]
first proposed the augmented Lagrangian and the method of
multipliers in the 1960s. Dual Decomposition also made its
appearance in the 1960s in the works of Everett [64], Dantzig-
Wolfe [65], Benders [66], and Dantzig [67].

2) Dual Decomposition: The Lagrangian functions of op-
timization problems that have a separable structure can be
exploited using dual decomposition techniques [53], [64], [68].
Consider an optimization problem of the form
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min
x

N∑
i=1

fi (xi) (11a)

subject to
N∑
i=1

Aixi = b (11b)

where, for i = 1, . . . , N , fi (·) is a cost function, xi ∈ Rni is
the length ni vector of decision variables associated with the
function fi, Ai ∈ Rm×ni is a specified matrix, and b ∈ Rm
is a specified vector. The Lagrangian for (11) is

L (x, y) :=

N∑
i=1

Li (xi, y) (12)

where Li (xi, y) := fi (xi)+y
TAixi−(1/N)yT b and y ∈ Rm

is the vector of dual variables. A decomposable mathematical
structure in this form can often be constructed by duplicating
variables shared by multiple functions fi along with additional
equality constraints that ensure consistency among the dupli-
cated variables.

Dual decomposition methods use an iterative method called
“dual ascent”:

xk+1
i := argmin

xi

Li
(
xi, y

k
)

(13a)

yk+1 := yk + αk

(
N∑
i=1

(
Aix

k+1
i

)
− b

)
(13b)

where k is the iteration counter and αk > 0 is the specified
step size at iteration k. Observe that each update of (13a) can
be performed independently, which enables a decentralized im-
plementation of this step. (The dual variable update step (13b)
requires a central coordinator.) Note that the convergence of
dual decomposition techniques is generally not guaranteed,
even for convex problems, and depends on the step size αk

and problem characteristics.
3) Alternating Direction Method of Multipliers: Many dis-

tributed optimization approaches are based on the ADMM al-
gorithm or its variants. Similar to dual decomposition, ADMM
has minimization and dual variable update steps, but it uses
an augmented Lagrangian function. This section provides an
overview; see [68] for a detailed tutorial.

ADMM is applicable to optimization problems of the form

min
x,z

f (x) + g (z) (14a)

subject to Ax+Bz = c (14b)

where x and z are decision variables, A and B are specified
matrices, c is a specified vector, and f (x) and g (z) are
specified functions. The ADMM algorithm is based on the
augmented Lagrangian for (14):

Lρ := f (x)+g (z)+yT (Ax+Bz − c)+ρ
2
||Ax+Bz − c||22

(15)
where ρ > 0 is a specified penalty parameter and || · ||2 is
the two-norm. Observe that (15) is the Lagrangian of (14)
augmented with a weighted squared norm of the constraint

residual. The ADMM algorithm iteratively minimizes the
augmented Lagrangian by performing the following updates:

xk+1 := argmin
x

Lρ
(
x, zk, yk

)
(16a)

zk+1 := argmin
z

Lρ
(
xk+1, z, yk

)
(16b)

yk+1 := yk + ρ
(
Axk+1 +Bzk+1 − c

)
(16c)

where superscripts indicate the iteration index and y is the
dual variable. Since the x and z updates in (16a) and (16b) are
independent, they can be performed in a decentralized fashion.

If the functions f (x) and g (z) are convex, the constraint
residual under ADMM (16) is guaranteed to converge to zero
and the objective value to the minimum of (14). Typically,
the iterations converge quickly to moderate accuracy but can
be slow to converge to high accuracy. The convergence rate
depends on the choice of ρ, and different strategies have
been proposed for adaptatively choosing this parameter [68].
(The literature also describes optimal strategies for choosing
ADMM parameters for certain problems [69].) The ADMM
algorithm can be applied to non-convex problems, but there is
no guarantee of convergence.

The flexibility afforded by the choice of the functions f (x)
and g (z) allows for consideration of optimization problems
with non-linear constraints. Consider, for instance, the opti-
mization problem minx f (x) s.t. gi (x) ≥ 0, i = 1, . . . ,m.
ADMM can be applied to this problem using the reformulation
minx,z f (x) + h (z) s.t. x = z, where h (z) is the indicator

function h (z) :=

{
0 gi (z) ≥ 0, i = 1, . . . ,m

∞ otherwise
. The varia-

tions among the ADMM algorithms considered in this survey
are often related to different choices for the decomposition
between f (x) and g (x).

As described above, ADMM algorithms require a central
coordinator to manage the dual variable update step (16c).
However, a modification known as Proximal Message Passing
(PMP) facilitates a distributed algorithm. At each iteration of
the proximal message passing algorithm, each agent evaluates
a “prox” function:

proxfi,ρ (v) := argmin
wi

(
fi (wi) + (ρ/2) ||wi − vi||22

)
. (17)

The vector wi contains both the decision variables (which
themselves are chosen based on the power flow model) and the
dual variables for agent i.3 The vector vi contains the average
values of the variables in wi for all neighboring nodes. The
function fi (wi) is the local objective for a specific agent with
respect to the decision variables in wi. The scalar ρ is a tuning
parameter. Thus, the prox function optimizes an agent’s local
objective fi (wi) while minimizing the weighted mismatch to
the primal and dual variables from the agent’s neighbors. The
agents pass the results of the prox algorithm (i.e., their local
copy in the variable wi) to their neighbors such that each agent
can compute the average value vi to execute the next iteration.
The algorithm converges when the agents agree on common

3In the notation of (16), the vector wi in (17) for each agent contains local
copies of both the primal variables (x or z in (14), depending on the agent)
and the dual variables y.



6

values for wi. The Proximal Message Passing algorithm is
a special case of ADMM and thus inherits the convergence
guarantees for convex problems. See [70] for further details.

4) Analytical Target Cascading: Analytical Target Cascad-
ing (ATC) is a hierarchial, iterative approach for distributed
solution of an optimization problem. The optimization problem
is split into subproblems which are related by a tree structure.
Parent and children subproblems in this tree share optimization
variables, with the coupling modeled using penalty functions
that are modified at each iteration. If all subproblems are
convex, the algorithm is guaranteed to converge to the solution.
Note that ATC algorithms require a central coordinator to
manage the distributed computations. See, e.g., [71], [72] for
further details.

5) Auxiliary Problem Principle: Similar to the previous
techniques, the Auxiliary Problem Principle (APP) technique
decomposes an optimization problem into subproblems with
shared variables [73]. Each subproblem corresponds to a
region of the system with shared variables at the tie-lines
connecting to neighboring regions. An augmented Lagrangian
approach is again used to ensure consistency between the sub-
problems for neighboring regions. The key difference for APP
techniques is that the cross-terms in the two-norm expression
employed in the augmented Lagrangian (15) are linearized
rather than modeled directly as in ADMM and ATC tech-
niques. This decouples the subproblems such that no central
coordinator is required for APP techniques. Convergence is
guaranteed if all subproblems are convex.

6) Optimality Condition Decomposition: Rather than du-
plicating shared variables as in the previous techniques, the
Optimality Condition Decomposition (OCD) technique assigns
each primal and dual variable to a specific subproblem [74].
Each agent considers a subproblem under the condition that
only its assigned variables are allowed to change (i.e., all
variables that are assigned to other subproblems are fixed to
their previous values). The couplings for the variables assigned
to other subproblems are modeled using linear penalties that
are added to the objective. The coefficients for these linear
penalties are defined by the Lagrange multipliers resulting
from other subproblems. At each iteration, each agent applies
one step of a Newton-Raphson method to the KKT conditions
for its subproblem and then shares the resulting primal and
dual values with its neighboring agents. Thus, the OCD tech-
nique is effectively an approach for distributed solution of the
KKT conditions for an optimization problem. Note that OCD
techniques do not require a central coordinator. A sufficient
condition for convergence holds when the coupling between
subproblems is relatively weak (i.e., there is a small number
of sparsely connected subproblems) [74]. A modified OCD
algorithm using “correction terms” improves the convergence
rate at the cost of a some additional communication between
agents [75], [76].

7) Consensus+Innovation: The Consensus+Innovation
(C+I) technique [77], [78] is similar to the OCD technique
in that both perform a distributed solution of the KKT
conditions. However, rather than assigning each variable
to a certain subproblem as in the OCD technique, the
C+I technique uses an iterative algorithm that allows all

variables in a subproblem to vary. A limit point of the
iterative algorithm satisfies the KKT conditions. For convex
problems, any limit point of this iterative algorithm is
therefore an optimal solution [78]. Since each step of the
iterative algorithm can be performed using only local and
neighboring information, computations in the C+I technique
can be performed in a distributed fashion without the need
for a central coordinator. Unlike OCD techniques, the C+I
technique is applicable at any level of partitioning: an
individual agent could potentially represent a single bus or
a large region of the network. Various modifications of C+I
speed convergence via additional communication links [79]
and facilitate consideration of communication delays [80].

III. DISTRIBUTED ALGORITHMS FOR OPTIMAL POWER
FLOW PROBLEMS

The OPF problem (10) minimizes the total system cost
subject to engineering limits and the physical constraints
dictated by the power flow equations. This section surveys
the application of distributed optimization techniques to the
OPF problem for offline applications. The survey is organized
by the type of power flow representation (linear, convex non-
linear, and non-convex) and optimization technique.

A. Distributed Algorithms for Linear Approximations of the
OPF Problem

This section reviews distributed algorithms developed for
optimization problems that employ the DC power flow
model (4) for transmission systems and two power flow
linearizations applicable to distribution systems, (5) and (6).

1) Distributed Optimization with a DC Power Flow Model:
Following the exposition in [51], this section summarizes
distributed optimization approaches for DC OPF problems
categorized by the associated solution technique discussed in
Section II-C. See [51] for an extensive review with detailed
mathematical descriptions for many relevant algorithms and
formulations.

a) Applications of Dual Decomposition to DC OPF
Problems: Early work [81] in distributed approaches for
solving DC OPF problems employs a dual decomposition
technique that adds fictitious buses at the interconnections
between independently coordinated areas. Note that the ap-
proach in [81] augments the DC power flow model (4) with an
approximation of the line losses. Other work that applies dual
decomposition techniques includes [82], which incorporates
discrete decision variables. The approach in [82] uses so-
called “ordinal optimization” techniques that aim to achieve
“good enough” choices for the discrete variables while using a
dual decomposition for the continuous variables. Recent pub-
lications [83], [84] study the integration of demand response
resources, including privacy considerations and multiple time
periods. Other recent work [85] applies the dual decomposition
approach to the DC OPF problem (with a quadratic line loss
approximation) in an electricity market context.

b) Applications of ADMM to DC OPF Problems:
ADMM techniques have recently been applied to a variety of
power system optimization problems. Reference [86] presents
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Fig. 1. Depiction of the proximal message passing variant of the ADMM
algorithm proposed in [87] for the Security-Constrained DC OPF problem.
Each generator “g”, transmission line “T”, load “D”, and bus “N” has an
associated computing agent for the base case and each contingency scenario.

a mathematical treatment of ADMM in the context of DC OPF
problems, including the consideration of asynchronous updates
(i.e., only some of subproblems are updated at each iteration
of the ADMM algorithm).

The proximal message passing variant of ADMM (see Sec-
tion II-C3) eliminates the need for a central coordinator to
perform the dual update step, thus enabling a distributed im-
plementation. In [70], ADMM with proximal message passing
is applied to DC OPF problems, including a multi-period
formulation with many possible device types (HVDC lines,
storage devices, controllable loads, etc.). Each component
(generator, transmission line, load, and bus) has an associated
computing agent. At every iteration, the computing agents
solve (in parallel) prox functions (17) to update the vari-
ables associated with each component. For generators, fi (·)
in the prox function consists of the generation cost, while
vi is computed by averaging the neighboring components’
values for the power generation and voltage phase angles.
For lines, fi (·) is an indicator function signaling satisfaction
of the relationship between the power flow and phase angle
difference across the line, such that the prox function (17) can
be computed analytically. The prox functions for loads consist
of update equations for active power and phase angle that can
also be evaluated analytically. Computing agents for the buses
update the Lagrange multipliers for nodal power balance and
nodal phase angle consistency. The iterations proceed until the
agents agree on all values for the variables shared by multiple
components.

Extension of the proximal message passing variant of
ADMM is proposed for security-constrained DC OPF prob-
lems in [87]. As depicted in Fig. 1, this extension requires that
each component (generator, transmission line, load, and bus)
has a computing agent for the base case and each contingency
scenario.

c) Applications of ATC to DC Unit Commitment Prob-
lems: Studies of ATC techniques with DC power flow models
have been conducted in the context of security-constrained
unit commitment problems [88], [89]. The approach in [88]
has one central coordinator with multiple lower-level agents,
each associated with a region of the transmission network.

The approach in [89] models a transmission system with
multiple connected distribution systems, decomposed at the
boundary substations. Note that a DC power flow model
is used for the distribution systems, which is generally not
appropriate. However, the general decomposition approach
could conceivably be applied using a more realistic power flow
model for the distribution systems.

d) Applications of APP to DC Unit Commitment Prob-
lems: An APP technique is applied in the context of the unit
commitment problem in [90] using a two-level generalized
Benders’ decomposition approach. The top level determines a
generator schedule by solving a conventional unit commitment
problem. Multi-period DC OPF subproblems, each decom-
posed regionally using the APP technique, provide cuts for the
master problem. This improves computational tractability and
protects private utility data. Reference [91] also uses the APP
technique to solve a two-stage stochastic unit commitment
problem which considers wind uncertainty with geographically
distributed reserves.

e) Applications of OCD to DC OPF Problems: DC OPF
problems were among the first applications of OCD tech-
niques. Rather than adding fictitious border buses, [92] uses
OCD to decompose the DC OPF problem at the tie lines
to neighboring regions. Reference [92] also demonstrates the
capabilities of OCD techniques using a 583-bus model of the
Balkan system. Demonstration on a network of computers
is presented in [93], which includes some modifications that
require a central coordinator to check for convergence.

A so-called Heterogeneous Decomposition (HGD) algo-
rithm related to OCD techniques is used in [94] to jointly
model transmission and distribution systems, decomposed at
the boundary substations. The transmission system sends Lo-
cational Marginal Prices (LMPs) at the boundary substations
to the distribution system, while the distribution systems pass
power consumptions back to the transmission system. The
approach in [94] uses a DC power flow model for both
transmission and distribution systems, with the consideration
of possible modifications to account for voltage constraints.

Improvements in the convergence speed of OCD techniques
can be achieved by computing linear sensitivities for the dual
variables passed to each subproblem [95]. A similar approach
is applied in [96], which extends [94] by computing the
sensitivities of the LMPs to the load injections at the boundary
substations.

f) Applications of C+I to DC OPF Problems: The C+I
decomposition technique has solely been applied to DC OPF
problems [77], [78]. At each iteration, the buses send their
phase angle, power generation, and dual variables for the
power balance and line flow constraints to their neighbors.
Each bus then uses these shared variables to analytically
compute an update for the next iteration. The C+I technique is
guaranteed to converge to the DC OPF solution. Improvements
made to the C+I technique include faster convergence rates via
communicating with buses beyond immediate neighbors [79],
the consideration of asynchronous updates [80], and incorpo-
ration of security constraints [97].

2) Distributed Optimization with Linearized Power Flow
Models for Distribution Networks: While generally well suited
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for transmission systems, the DC power flow model is typi-
cally inappropriate for distribution systems. The other power
flow linearizations discussed in Section II-A (i.e., (5) and (6))
are better models for distribution networks. This section next
surveys the literature of distributed optimization algorithms
that use these power flow models.

a) Applications of Dual Decomposition to Linear Power
Flow Models: Reference [98] uses the linearized DistFlow
model (6) in concert with dual decomposition. Specifi-
cally, [98] considers a distributed two-level stochastic opti-
mization problem, with the first level representing the deci-
sions for a microgrid and the second level representing the
decisions for the distribution network operator. The microgrids
are coupled by penalty functions that are iteratively determined
by the distribution network operator.

b) Applications of ADMM to Linear Power Flow Models:
The linearized DistFlow model (6) is also used as the basis of
the work in [99]–[101]. The approach in [99] minimizes power
losses in a distribution system subject to limits on voltage
magnitudes and inverter reactive power capabilities. ADMM
is found to outperform a dual decomposition method for
this problem. The approach in [100] uses ADMM in concert
with stochastic programming in order to consider uncertainty
in distribution systems, with decomposition over each bus
and each scenario in the stochastic program. Using a regret
minimization approach, [101] also considers uncertainty.

As an alternative to the linearized DistFlow equations,
the approach in [102] uses the power flow linearization (5)
from [20], [21] to optimize distribution systems with large
penetrations of solar PV. The ability to regulate voltage
magnitudes is validated using test cases with realistic solar
generation data.

The power flow model employed in [103] is based on
a linearization of the DistFlow model (3) about a specified
operating point. The approach in [103] provides an optimal
reactive power dispatch for voltage regulation in unbalanced
radial distribution systems.

B. Distributed Algorithms for Non-Linear Convex Approxima-
tions of the OPF Problem

Convex relaxations based on SDP and SOCP have shown
promise for a variety of power system optimization problems.
This section reviews distributed approaches for solving these
relaxations.

1) Distributed Optimization with the SDP Relaxation:
As formulated in Section II-A, the positive semidefinite
constraint (8c) in the SDP relaxation couples the variables
associated with all buses. There exists an equivalent, sparsity-
exploiting reformulation of this constraint that results in a
mathematical structure that more closely represents the net-
work topology [104]–[106]. Specifically, the positive semidef-
inite constraint on the n × n matrix W in (8c) can be
decomposed into positive semidefinite constraints on certain
submatrices of W. (The submatrices are determined by the
maximal cliques of a chordal extension of the network graph.
See [107] for further details.) This helps facilitate the applica-
tion of various decomposition techniques. This section reviews
applications of dual decomposition and ADMM techniques

used in the context of SDP relaxations of the power flow
equations.

a) Applications of Dual Decomposition to the SDP Re-
laxation: Reference [106] proposes two decompositions for
the SDP relaxation derived from the primal and dual prob-
lem formulations, exploiting network sparsity through chordal
extension. Computing agents solve SDP subproblems, one
for each maximal clique, corresponding to small regions of
the network and share primal or dual variables with the
other connected subregions. The updates can be performed
asynchronously. Reference [46] applies related techniques to
the voltage regulation problem for distribution systems.

b) Applications of ADMM to the SDP Relaxation:
ADMM techniques are applied to solve OPF problems for
three-phase unbalanced models of radial distribution networks
in [32], which shows improved convergence relative to dual
decomposition approaches. A similar ADMM approach is
applied in [108] to optimize distribution systems with large
quantities of solar PV generation. Reference [109] applies
ADMM to OPF problems for balanced mesh network models
suitable for transmission systems. The heart of the approach
in [109] consists of eigenvalue computations that can be
performed in parallel. Reference [110] proposes an ADMM
algorithm for unbalanced three-phase models of distribution
systems. In the key step for the algorithm in [110], each of
the agents’ problems reduces to evaluating either a closed form
expression or the eigendecomposition of a 6× 6 matrix.

2) Distributed Optimization with the SOCP Relaxation:
Reference [111] applies an ADMM technique to the SOCP re-
laxation (i.e., (3a)–(3c), (9)) for single-phase models of radial
networks in a manner that creates subproblems associated with
each bus. An analytical solution for each subproblem yields
favorable computational characteristics. This is extended to
the case of unbalanced radial networks in [112], where each
subproblem either has a closed-form solution or is a small
eigenvalue problem whose size is independent of the network
size. Related work [113] considers methods for tuning the
ADMM parameter ρ in (16), which can have a large impact
on the convergence rate.

C. Distributed Algorithms for the Non-Convex OPF Problem

Other than the C+I technique, all other decomposition
techniques described in Section II-C have been applied to
non-convex formulations of the OPF problem. Note that the
theoretical guarantees associated with convex formulations
(i.e., the linear approximations reviewed in Section III-A and
the relaxations reviewed in Section III-B) are generally not
available for non-convex formulations. However, the papers
reviewed below demonstrate that various distributed optimiza-
tion techniques are capable of solving certain practical non-
convex OPF problems.

1) Applications of Dual Decomposition to the Non-Convex
OPF Problem: Early work [114] applies a dual decomposition
method that dualizes the coupling constraints associated with
the tie lines between regions. Each subproblem is a non-
convex OPF problem with a penalization term in the objective
associated with the coupling constraints. The approach in [114]
uses an interior point algorithm in combination with cutting
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plane methods to solve these subproblems. In more recent
work, [115] proposes a dual decomposition based algorithm
for balanced radial networks using an augmented Lagrangian
approach. The algorithm in [115] can be implemented asyn-
chronously and has associated theory claiming a convergence
guarantee.

2) Applications of ADMM to the Non-Convex OPF Prob-
lem: Reference [116] applies ADMM to a decoupled
power flow model, which independently considers the active
power/voltage angle and reactive power/voltage magnitude
couplings. The algorithm in [116] decomposes the active and
reactive power flows between regions.

Recent ADMM-based research efforts [75], [117]–[120]
model the fully coupled AC power flow equations in terms
of the voltage phasors. Reference [117] decomposes coupling
constraints on the rectangular voltage components (i.e., ei and
fi where the voltage phasor Vi = ei + jfi, i ∈ N ). The dual
variable updates (16c) can be computed locally by each agent
in this approach. Reference [118] also describes an ADMM
approach that regionally decomposes subproblems based on
shared rectangular voltage coordinates. Subsequent work [119]
proposes a decomposition using auxiliary variables that rep-
resent the sums and differences of voltage phasors between
the terminals of lines that are shared by multiple regions.
The sums and differences of the voltage phasors more closely
represent the expressions found in the power flow equations,
which results in improved convergence characteristics. Under
the assumption that the solver applied to each subproblem is
reliable in finding a local solution, an approach for updating
the penalty parameter (ρ in (16)) gurantees convergence of
the ADMM algorithm. In order to apply ADMM techniques to
large problems, [75] proposes a spectral partitioning technique
for determining the regional decomposition. In combination
with the coupling approach proposed in [119] and a strategy
for updating the penalty parameter, the spectral partitioning
technique results in tractability for large problems (e.g., the
2383-bus Polish system in MATPOWER [121]) [75]. In recent
work, [120] performs extensive numerical studies via applica-
tion of an ADMM technique to a variety of test cases. The
results show that the numerical performance of the ADMM
algorithm is sensitive to the penalty parameter, with certain
parameter values reducing the number of iterations required
by an order of magnitude relative to other parameter values.
The results also empirically demonstrate the existence of
parameter values that yield near globally optimal solutions
for all test cases considered. However, appropriate parameter
values ranged over several orders of magnitude, and the paper
does not provide a method for choosing appropriate parameter
values.

The algorithm in [122] uses a power flow formulation that
includes variables for both current and voltage phasors. Each
iteration of the algorithm in [122] solves a quadratic program
derived via applying linearization techniques, with the overall
algorithm yielding a solution that satisfies the non-linear power
flow equations.

3) Applications of ATC to the Non-Convex OPF Problem:
A two-level ATC algorithm is applied in [123] to coordinate
the operation of a distribution grid that contains micrgrids.

The voltage magnitudes and angles at the boundaries of the
distribution system and microgrid subproblems are coupled
using an exponential penalty formulation [124].

4) Applications of APP to the Non-Convex OPF Problem:
Early work in distributed optimization techniques for OPF
problems includes the APP-based approach in [125]. The OPF
problem is decomposed regionally using “dummy generators”
whose active and reactive power outputs and voltage pha-
sors model the neighboring regions. Subsequent work [126]
demonstrates the capabilities of this decomposition using a
2587-line model of ERCOT. Case studies with multiple regions
are presented in [127], which also provides guidance regarding
the choice of penalty parameters in the APP formulation.

5) Applications of OCD to the Non-Convex OPF Problem:
OCD techniques were first proposed in the context of the
non-convex OPF problem [74], with a more detailed descrip-
tion and analysis of the convergence characteristics presened
in [128]. Several advances are presented in [129], including pa-
rameter tuning and better consideration of the reference angle.
The approach in [130] considers the coordinated operation of
FACTS devices using an overlapping regional decomposition.
In order to speed convergence rates, [76] proposes the use
of “correction terms” that require some additional sharing of
information between buses which are not directly connected
in the power system network. Reference [131] describes a
partitioning method based on a spectral analysis that results
in computational improvements for the OCD approach.

6) Applications of Other Distributed Optimization Tech-
niques to the Non-Convex OPF Problem: Two other dis-
tributed optimization techniques have also been applied to
non-convex OPF problems: Gradient Dynamics and Dynamic
Programming with Message Passing.

First proposed in [132] with more recent treatments in [133],
[134], the Gradient Dynamics (GD) technique embeds the
KKT conditions for an optimization problem in a dynamical
system. The equilibria of the dynamical system correspond to
KKT points for the original OPF problem. Assuming the sat-
isfaction of certain technical conditions, the approach in [135]
and [136] constructs a formulation which ensures that only the
optima of the OPF problem are locally stable, with other KKT
points being unstable. Thus, the OPF problem can be solved by
integrating the dynamical system. This technique inherits the
decomposibility associated with the network structure: when
integrating the dynamical system, each bus can serve as a
computing agent that only communicates with its neighbors.
The Gradient Dynamics approach is applied to solve the
non-convex OPF problem in [135]. Theoretical analyses of
the proposed approach and comparison to convex relaxation
techniques are presented in [136]–[138].

A Dynamic Programming technique proposed in [139] (see
also the more general presentation in [140]) performs an
interval-based discretization of the power flow variables in
the DistFlow model (3). For tree networks, this discretization
enables the application of tools from dynamic programming to
compute both a lower bound on the optimal objective value of
the OPF problem and an approximately feasible solution (to
within a tolerance that depends on the discretization). Discrete
variables can also be incorporated into this formulation. The
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tree topology enables a natural distributed implementation
using a message passing approach. Extension to more general
network topologies is also possible using more sophisticated
ideas from constraint programming.

D. Comparison of Distributed Algorithms for Power System
Optimization

Most of the existing numerical algorithms for solving power
system optimization problems are based on either first-order
methods relying on gradients of the objective and constraint
functions or second-order methods relying on both gradients
and hessians of the objective and constraint functions. Second-
order methods benefit from a small number of iterations and a
high convergence rate, but the complexity of each iteration is
prohibitive for large-scale problems in general. In particular,
these methods are not parallelizable unless the problem is
highly sparse and structured. Conversely, first-order methods
have cheap iterations that can often be parallelized, but the
convergence rate is low and is highly affected by the condition
number of the problem data.

Although first-order methods all have the same convergence
rate in the worst case, they exhibit different performances
on specific applications, with the empirical convergence and
complexity of each method depending on the specifics of the
underlying problem. This explains the large number of first-
order methods surveyed in this paper. Each of these methods
has some tunable parameters to improve the performance,
and there is a trade-off between how many iterations are
required to obtain a high-quality approximate solution and
how many computing nodes (and how much communication)
are used for parallelizing the computations. For instance, the
performance of an ADMM-based algorithm depends on the
step size parameter ρ in (16), which balances the convergence
rates of the primal and dual residuals. While there are various
strategies to select an appropriate value of ρ (see, e.g., the
review of such strategies for general optimization problems
in [68, Section 3.4]), performance is generally problem de-
pendent [113].

With a strong dependence on the application and problem of
interest as well as appropriate parameter tuning, quantitative
analyses via numerical simulations are key for understanding
performance in practice. See [51], [54], [55], [113] for further
discussion and quantitative comparisons among some of the
methods surveyed in this paper. Further empirical work is
needed to better characterize the practical performance of dis-
tributed optimization algorithms and the selection of appropri-
ate tuning parameters for various power system optimization
problems.

IV. ONLINE OPTIMIZATION AND CONTROL

Section III focuses on offline algorithms for solving OPF
problems. Even though these algorithms are distributed, they
iterate on all variables in the cyberspace until they converge
before their solutions are applied to the physical grid. In
particular the intermediate iterates typically do not satisfy
the power flow equations (Kirchhoff’s laws) nor operational
constraints. While offline algorithms have been widely used

min
x,u

     f (x,u)

s. t.      power  flow  equations
           operational constraints

power network model

real-time feedback optimization

control  u(t)state  x(t)

Fig. 2. General structure of real-time, or online, algorithms for optimization
problems.

Grid:  power system dynamics
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Realtime OPF: gradient update
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Fig. 3. Online or real-time algorithms for OPF problems where the controller
updates the control variable u(t) in each period and applies it to the grid. The
grid implicitly solves the power flow equation F (x, u(t)) = 0 to determine
the state variable x(t), which is measured and used to compute the control
u(t+ 1) in the next period.

in traditional power system applications, they may become
inadequate in some future applications that involve a large
network of distributed energy resources, especially in the
presence of fluctuating loads and volatile renewables.

In this section, we summarize recent research on real-time,
or online, algorithms for solving power system optimization
and control problems. These algorithms iterate only on vari-
ables corresponding to controllable devices (e.g., intelligent
loads) in feedback interaction with the grid. The grid may be
modeled by a set of algebraic power flow equations for slow
timescale behavior or by a set of differential equations for
fast timescale behavior. The general structure is illustrated in
Fig. 2, where a model of the physical network is given and
an optimization problem is specified as the control objective.
Our task is to design a real-time feedback controller so that
the closed-loop system converges to an equilibrium that solves
the optimization problem. Different papers use different power
flow models and different algorithms to compute the control
in each iteration within this general framework.

There are two important advantages of real-time closed-
loop implementation of optimization algorithms. First, this
approach naturally tracks changing network conditions as
these changes manifest themselves in the network state x(t)
that is used to calculate the control u(t) (see Fig. 2). These
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algorithms therefore tend to be robust to uncertainties and dis-
turbances, e.g, due to fluctuating loads and volatile renewables.
Furthermore, as we will see below, many of the proposed
algorithms are to some extent decentralized and model-free
(e.g., independent of system parameters and relying only on
local measurements) which makes them attractive in a plug-
and-play scenario. Second, for some applications that involve
a large network of distributed energy resources in the future,
solving the optimization centrally will be infeasible because
of the high cost of collecting and communicating the required
state and parameter data and because of the desire to protect
private information spread across multiple organizations. Real-
time distributed solution may be the only viable strategy in
these situations.

In the following, we first summarize distributed control
theory for general systems. We then review four prominent
applications of online feedback optimization algorithms spe-
cific to power systems: real-time optimal power flow, optimal
frequency control, optimal voltage regulation, and optimal
wide-area control.

A. Overview of Distributed Control Theory
Classical control theory provides a rich mathematical foun-

dation for the design of centralized controllers for an in-
terconnected or multi-channel system composed of several
(interconnected) subsystems. A centralized control framework
is concerned with a single control unit responsible for col-
lecting the outputs of all subsystems, processing the acquired
information, and generating the inputs of those subsystems.
This centralized control approach is an unattractive, if not
infeasible, strategy for many real-world systems due in part
to its computation and communication complexity.

The area of decentralized control has been created to address
the challenges arising in the control of complex networks and
large-scale systems [141]–[144]. The objective is to design
a structurally constrained controller with the aim of reducing
the computation and communication complexity of the overall
controller. The control layer consists of a number of local
controllers (sub-controllers), where each sub-controller is in
charge of controlling only one of the subsystems of the inter-
connected system. The local controllers are often allowed to
exchange limited information with one another. Recalling the
definitions in the introduction, this type of controller is usually
referred to as a distributed controller (especially when the
local controllers are geographically distributed). In contrast, a
decentralized controller has no information exchange among
the local controllers.

Consider the problem of designing an optimal decentral-
ized controller for a multi-channel deterministic or stochastic
system, where the optimality is measured with respect to a
linear-quadratic, H2, or H∞ performance index. It has long
been known that this problem is computationally hard to solve
and, in particular, NP-hard in the worst case [145]–[147].
Great effort has been devoted to investigating this highly
complex problem for special types of systems, including spa-
tially distributed systems [148]–[152], dynamically decoupled
systems [153], [154], weakly coupled systems [155], and
strongly connected systems [156]. Another special case that

has received considerable attention is the design of an optimal
static distributed controller [157], [158]. Early approaches
for the optimal decentralized control problem were based on
parameterization techniques [159], [160], which were then
evolved into matrix optimization methods [161], [162].

Due to the recent advances in the area of convex optimiza-
tion, the focus of the existing research efforts has shifted from
deriving a closed-form solution for the above control synthesis
problem to finding a convex formulation of the problem that
can be efficiently solved numerically [163]–[170]. This has
been carried out in the seminal work [171] by deriving a
sufficient condition named quadratic invariance, which has
been generalized in [172] by deploying the concept of partially
ordered sets. These conditions have been further investigated
in several other papers [173]–[175]. A different approach is
taken in the recent papers [176], [177], where it has been
shown that the decentralized control problem can be cast as
a convex optimization for positive systems. More recently,
conic optimization has been applied to the optimal distributed
control problem, and it has been shown that a semidefinite
programming (SDP) relaxation of this problem always has
a low-rank solution [178], [179]. Finally, another stream of
research attempts to overcome the complexity of decentral-
ized optimal control problems by appropriately regularizing
centralized problems so that they are either convexified (even
in presence of structural constraints) [180] or admit a sparse
solution [158], [170], [181], [182].

The optimal distributed control problem in a general setting
deals with the minimization of a cost functional that is com-
posed of both terminal and transient (stage) costs. Moreover,
the state and input constraints are requited to belong to pre-
specified sets at all times. Although this problem has a high
computational complexity, a special case of the problem is
much more tractable where the stage cost is zero and there
is no hard constraint on the state and input trajectories. The
latter problem has been studied in the context of electric power
systems for various applications such as real-time optimal
power flow control, frequency control, and voltage control.
We will survey these papers in the rest of this section.

B. Real-Time Optimal Power Flow
We first consider the problem of solving OPF in closed loop.

While this problem has emerged only recently, it has already
led to several parallel research developments by different
groups. Here we focus on slow timescale behavior where the
network is modeled by a set of power flow equations. In
each iteration, the real-time optimization algorithm computes
a control u(t) and applies it to the grid, which then computes
the state x(t) by implicitly solving the power flow equations
in real time at scale, as illustrated in Fig. 3. This approach
hence explicitly exploits the law of physics as a power flow
solver. Unlike offline algorithms, the intermediate iterates not
only satisfy the power flow equations by design, but may
also satisfy operational constraints, depending on the specific
algorithm.

In [183], a radial network is modeled by the DistFlow
equations (3) and a first-order gradient algorithm is used to
compute the control in each iteration. Barrier functions are
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used to ensure that operational constraints are satisfied at
all times. Sufficient conditions for convergence to a local
or a global optimum of the non-convex OPF problem are
both established. The same problem is studied in [184] using
a completely different approach that does not require the
controller to know the network model. This approach uses a
gradient-based extremum seeking algorithm where a sinusoidal
probing signal is injected into the network in order to estimate
the gradient of the cost function with respect to control
variable u(t). Reference [184] proves a sufficient condition for
the cost function to be convex in the control u and, under this
condition, it shows that the algorithm converges to a neigh-
borhood of the optimum. Incidentally, this sufficient condition
also guarantees that the gradient algorithm of [183] attains
global optimality. A general network is modeled in [185] using
the AC power flow equations (1) in the complex form. The
paper proposes a first-order distributed subgradient algorithm
for solving the SDP relaxation of the OPF problem and proves
its global convergence. The methods in both [183] and [185]
extend to the case of multiphase unbalanced networks. In
[186], an online projected-gradient approach is proposed that
steers the closed-loop system on the power flow manifold (the
space of solutions of the power flow equations [22]) towards
a locally optimal solution. The performance and robustness of
this approach have been demonstrated in [187].

A key assumption in all of the above papers is that the
OPF problem is static. The time-varying case where the OPF
problem changes in each iteration is studied in [188]. A
linearized power flow model closely related to (5) is used
and a first-order primal-dual algorithm is proposed based on a
regularized Lagrangian. The paper characterizes the tracking
performance of the proposed algorithm in terms of the rate
at which OPF drifts and errors due to regularization and in
gradient updates. In [189], the AC power flow model (1) is
used and a quasi-Newton method is proposed for better track-
ing of the time-varying OPF problem. Tracking performance
is characterized in terms of the rate at which OPF drifts, the
error in the Hessian estimation, and the condition number of
the approximate Hessian. A different approach is proposed
in [190] to deal with time-varying and random OPF problems
using the DistFlow model (3) and its linearization (6) for radial
networks. Stochastic dual subgradient algorithms are proposed
and certain operational constraints are enforced in an average
sense.

Since the problem is motivated by the control of a large
network of distributed energy resources in the future, decen-
tralized or distributed algorithms are desirable. Most schemes
proposed, however, are centralized. Notable exceptions are
online algorithms for volt/var control that are decentralized
(e.g. [191], [192]) or distributed (e.g. [193], [194]). Many of
these papers are discussed in Section IV-D on optimal voltage
regulation.

In summary, real-time online optimal power flow is a
relatively young problem, but it has already triggered a wide-
spread interest. Most fundamental questions concerning con-
vergence, robustness properties, and the cyber-physical imple-
mentation, especially distributed versions of online algorithms,
are wide open to date.

C. Optimal Frequency Control

Maintaining the system frequency close to its nominal value
despite fluctuating loads and generation is one of the central
tasks in controlling power systems. At its core, frequency
control is an optimal resource allocation problem, where
generation and load have to be balanced in the economically
most efficient way. Traditionally, this is achieved using a hier-
archical control scheme consisting of primary (Droop Control),
secondary (AGC), and tertiary (Economic Dispatch) layers
operating at different time scales [195]. Droop controllers
installed in synchronous generators and in voltage-source
inverters are fully decentralized and operate on a fast time
scale, but cannot by themselves restore the system frequency
to its nominal value following load changes. To ensure a
correct steady-state frequency and a fair power sharing among
generators and inverters, centralized AGC and Economic Dis-
patch schemes are traditionally employed. Developing more
flexible distributed schemes to replace, or complement, these
traditional control layers has been a very active research area in
the past few years. The interest is explained by the wide-spread
integration of distributed power generation, the deployment of
smart frequency-responsive loads, and the increasing interest
in microgrids with a need for independent operation.

In the following, we focus primarily on schemes supporting
the secondary and tertiary layers, that is, asymptotic frequency
regulation in an economically efficient way and possibly
subject to operational constraints. We begin by reviewing
integral-control strategies focusing on the optimal balancing
problem and then discuss primal-dual control strategies that
directly attack the resource allocation optimization problem.

1) Distributed Averaging for Optimal Frequency Control:
To obtain correct steady-state frequency without a centralized
controller, it has been proposed to complement the droop
controllers with fully decentralized integral control [196]–
[198]. Although these schemes ensure system stability and
correct steady-state frequency in theory, in practice they
suffer from poor robustness to measurement bias and clock
drifts [197], [199]–[201]. Furthermore, the injections of such
decentralized integral controllers generally do not lead to an
efficient allocation of generation resources.

To alleviate this shortcoming, distributed averaging-based
integral control can be implemented [198], [199], [202]–
[207]. These schemes are no longer decentralized and require
communication between the local controllers, but they can, on
the other hand, also ensure a fair sharing of power generation
by equalizing the marginal prices, so-called active power
sharing. Hence, they can also perform the duties normally
assigned to the tertiary power dispatch layer. Coordination
of generation via discrete-time consensus [208] or via ratio
consensus [209], [210] have also been considered in the
literature. It should be pointed out that while centralized
schemes suffer from a single point of failure, the distributed
schemes require retrofitting of the communication architecture,
which may prevent implementation in practice. It has also been
demonstrated that the distributed schemes can be sensitive to
faults and misbehavior of agents [200].

To combine the advantages of centralized and distributed
frequency-regulation schemes, semi-decentralized schemes



13

based on a single average of the local measurements have been
proposed [197], [200], [211], [212]. These methods can be de-
rived from a dual-gradient approach, and stability and optimal
economic dispatch can be ensured [200]. The papers [213]–
[218] have characterized and compared the transient control
performances of certain semi-decentralized, distributed, and
decentralized control schemes under varying network topolo-
gies and parameters. In particular, for decentralized and semi-
decentralized schemes, losses due to non-equilibrium power
flows have been show to be equal, and, for uniform network
parameters, independent of the network’s connectivity. How-
ever, in the case of distributed averaging-based integral control,
there is a dependence on network connectivity that can be
exploited to decrease transient resistive losses [219].

Extensions of some of the above distributed frequency-
control schemes to more general dynamical models have been
pursued in [220]–[225] by means of a passivity-based analysis.

2) Primal-Dual Methods for Optimal Frequency Control:
In parallel to integral-control strategies, a rich literature has
emerged that directly attacks the optimal generator dispatch
problem by means of optimization strategies which can be
implemented online as frequency controllers. Typically, these
strategies are based on primal-dual gradient methods dating
back to [226]–[228] that seek the saddle points of the La-
grangian function of the underlying optimization problem.

To the best of our knowledge, the earliest work that adopted
this approach was [229], which also exploited the pricing
interpretation of the Lagrange multipliers as a byproduct of
the dualization-based method. This pricing aspect of frequency
control has also been picked up in the recent literature on so-
called transactive control, bridging the gap between real-time
control, offline optimization, and market aspects [230], [231].

Aside from pricing, another interpretation of dualization-
based methods is that the primal-dual dynamics of a carefully
crafted generator dispatch optimization problem are formally
equivalent to the power system physics plus additional con-
troller dynamics [232]–[237], e.g., certain Lagrange multipli-
ers formally correspond to generator frequencies. Thus, part of
the frequency control problem is already solved by the power
system physics, and additional controllers enforce operational
constraints. Interestingly, part of these additionally needed
control loops already exist (e.g., droop controllers) whereas
others are novel. Once having understood that optimization
algorithms can be used to reverse-engineer the power system
physics and controllers already in place, the existing con-
trollers can also be tuned accordingly so that the closed-loop
system optimizes a desired cost function [238]–[240].

Finally, independently of pricing interpretations and reverse
engineering of the power system physics and controls, primal-
dual-based optimal frequency controllers have also been de-
ployed in [220], [241], [242] for fairly general, detailed, and
non-linear power system dynamics.

3) Conclusions on Optimal Frequency Control: Frequency
control is a well studied and mature problem area that has
seen various contributions from different directions. In the
following, we review a few open problems. It is generally
not known whether economically efficient frequency control
is possible in an entirely decentralized fashion. Furthermore,

the analysis of the widely adopted distributed averaging-based
integral controllers is thus far restricted to symmetric com-
munication topologies and the case of quadratic optimization
problems subject to power balance constraints. Hence, the
existing setup precludes uni-directional communication, non-
quadratic objectives as well as inequality constraints arising,
e.g., from generation limits. Finally, primal-dual algorithms
are very appealing since their implementation can partially be
outsourced to the system physics. If we take this striking idea
from frequency control to general power system operation, it
is yet unclear which control actions can be outsourced to the
system physics and which have to be implemented in a cyber-
layer.

D. Optimal Voltage Control
Optimal voltage regulation is generally considered to be

a more complex task than frequency regulation. Whereas
in frequency regulation the system can be balanced in the
economically most efficient way while respecting operational
constraints, the task of regulating the voltages is inherently not
aligned (and sometimes even in contradiction) with economic
objectives such as minimizing power losses, achieving a desir-
able fair power sharing (or curtailment), or other operational
objectives such as maximizing the distance to voltage col-
lapse [207], [243]–[246]. Due to this multi-objective nature of
voltage regulation, typically weighted sums of cost functions
are considered, voltages are regulated only outside certain safe
deadbands, or voltage bands are imposed as constraints rather
than as objectives.

The settings in the literature vary between transmission
and distribution scenarios, dominantly inductive or resistive
grids, and accordingly compensators provide either active or
reactive power to support the voltages. In the following, we
will (with slight abuse of notation) employ the colloquial
terminology of reactive power support. The relevant litera-
ture is rich in terms of centralized approaches that aim at
transferring existing centralized transmission-level solutions to
distributed generation scenarios and distribution systems. On
the other hand, it has been recognized that the task of voltage
regulation is to a large part a truly localized problem and fully
decentralized controllers [243], [247] can in certain instances
perform equally well as centralized strategies. However, it
is also known that mere decentralized strategies [248]–[250]
cannot successfully regulate the voltages in the presence of
certain constraints. In this case, the local compensators need
to be coordinated through a communication infrastructure.

1) Decentralized Optimal Voltage Control Strategies: We
begin our literature survey with fully decentralized control
strategies. It has been broadly recognized that the uncon-
strained optimization problem of minimizing a combination
of power losses and sum-of-squared voltage deviations admits
an entirely decentralized optimal solution described by a linear
trade-off between the local reactive power injection and the
local voltage deviation – colloquially also known as droop
control. This finding that droop-like behaviors are inverse
optimal is fairly robust to modeling assumptions and has been
made in meshed networks (modeled by the non-linear reactive
power flow (2b) with fixed angles) [251] and in radial networks
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using the Linearized DistFlow model (6) [252]. Similar droop
behaviors are being incorporated into national grid codes as
technical specifications for grid connected generators [253],
[254]. The gains of these droop control laws can be optimized,
according to both the grid topology and the operating point of
the grid, especially with respect to the active power injection of
the same generators [255]. Likewise, the IEEE 1547.8 control
standard proposing piece-wise linear droop behavior has been
found to be inverse optimal to a cost composed of sum-of-
squared voltage deviations and reactive power provisioning
in a Linearized DistFlow setting [191]. Even for the full
AC power flow (2), a variety of local control strategies give
rise to gradient-type closed-loop dynamics that are implicitly
optimal to cost functions composed of power losses, voltage
deviations, and injection costs [245]. For example, a popular
theme throughout the literature is that the gradient of a power
loss cost gives rise to power flows according to the principle
of least action.

Given these insights, different optimality-seeking controllers
can be engineered. References [192], [256] provide projected
(sub)gradient algorithms that can be implemented as fully
decentralized control strategies. The resulting closed-loop dy-
namics converge to the same optimizers as the droop-like
IEEE 1547.8 standard, but under less restrictive conditions
and with better transient performance. These results have
been extended in [257] towards asynchronous updates and
dynamically changing network conditions and in [258] towards
pseudo-gradient algorithms easing the implementation. Differ-
ent cost functions have been considered and optimized through
local gradient-based control strategies: [259] considers reactive
power loss minimization via projected integral controllers and
dual gradient ascent methods (13), [260] considers the objec-
tive of power transfer maximization through a projected gra-
dient scheme, [261] develops local proximal gradient schemes
to minimize sum-of-squared voltage deviations and the cost
of reactive power provisioning, and [262] provides a gradient-
based algorithm that changes the reactive power provisioning
only when voltages are outside the admissible range. All
of these schemes consider linearized power flow models.
Finally, inverse optimal droop-like controllers with quadratic
nonlinearities are advocated in [263] for the quadratic power
flow formulation (1), in [251] for a non-linear reactive power
flow model (2b) neglecting angles, and in [245] for the full
AC power flow model (2).

2) Distributed Optimal Voltage Control: Despite the
widespread success of fully decentralized control strategies,
a number of recent references [248]–[250] observed that a
large class of local controllers cannot successfully regulate
the voltages within prescribed bounds when the compensators
are also limited in terms of their reactive power injection. The
reason for this shortfall is the same that allowed the previous
references to prove their convergence statements: namely, in a
linearized system setting, monotone droop-like strategies give
rise to a unique closed-loop voltage and injection profile. The
latter may be feasible or not depending on the constraints
and system loading. Hence, in such scenarios the local com-
pensators need to be coordinated through a communication
infrastructure. We refer to such strategies as distributed.

In [193], an optimal reactive power flow problem is for-
mulated for a linearized power flow model that gives rise
to a linearly-constrained quadratic program whose optimizer
can be computed in a distributed fashion. A distributed online
control algorithm is tasked with tracking and stabilizing this
optimizer in closed loop. In order to incorporate the generator
constraints on reactive power injection, a distributed gradient
projection approach has been proposed in [264]. For the same
task, a distributed dual ascent method is proposed [194] that
guarantees convergence to the operating region where both
reactive power limits and voltage constraints are satisfied. A
projected dual ascent and an accelerated version are presented
in [249], [250]. Another set of distributed strategies target
the objective of fair reactive power sharing based on average
consensus of the injection ratios [207], [245], [265]. Yet
another objective is that of maximizing the distance to voltage
collapse, which is approached by means of regularization
and a distributed dual ascent method [246]. Finally, there
are many approaches decomposing centralized voltage opti-
mization problems into local subproblems that need to be
coordinated through communication. Examples are decom-
positions of SDPs [32], [46], ADMM schemes [108], [266],
broadcast communication [267], and leader-follower schemes
[268]. Whereas these approaches can be used for distributed
closed-loop control, the communication and computation load
is quite high making them more suitable for parallel and offline
computation.

3) Conclusions on Optimal Voltage Control: In conclusion,
the field of distributed optimal voltage control is rich in terms
of objectives, architectures, and algorithms. It is yet to be
understood which problems admit fully decentralized solutions
and when communication is needed. Another open question is
whether the design of these control strategies can be performed
in a decentralized manner, i.e., based only on the system’s
local parameters, enabling scalable and adaptive plug-and-play
deployments of these solutions.

E. Optimal Wide-Area Control for Oscillation Damping
Inter-area oscillations in bulk power systems are associated

with the dynamics of synchronous machines oscillating rela-
tive to each other. These system-wide oscillations arise from
modular network topologies, adversely interacting controllers,
and large inter-area power transfers. Inter-area oscillations
induce severe stress and performance limitations on the trans-
mission network and may even cause instabilities and outages.

These oscillations are conventionally damped by generator
excitation control via power system stabilizers (PSSs) or as
proposed more recently via HVDC links or FACTS devices.
However, mere decentralized control actions can interact in an
adverse way and destabilize the overall system. Furthermore,
even when decentralized controllers provide stability they may
result in poor performance, and their optimal tuning presents
non-trivial design challenges [269], [270].

The deployment of renewables in remote locations, the
increasingly deregulated operation of power systems, the
advent of low-inertia generation, and transmission network
expansions put inter-area oscillations back in the spotlight. The
monitoring and analysis of inter-area oscillations has recently
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been enhanced by advances in wide-area measurement and
communication technologies as well as scientific advances in
large-scale and multi-agent systems. These advances pave the
way to wide-area control (WAC), where control loops are
closed from remote phasor measurements to local synchronous
machine excitation controllers enabling real-time distributed
control on a continental scale. We refer to the surveys [271]–
[274] and the articles in [275] for further information.

Several efforts have been directed towards the selection of
few but critical WAC channels [274], [276] and decentralized
or distributed WAC design based on robust and optimal control
methods; see [277]–[282] and references therein. However,
it is to be noted the majority of the existing approaches
are either based on centralized (output feedback) control or
pre-parametrized and sub-optimally tuned controllers. More
recently, several approaches emerged that use the decentralized
control techniques reviewed in Section IV-A. Particularly,
sparsity-promoting approaches have been applied very suc-
cessfully: the `1-regularized H2-control approach developed
in [170] has been applied to WAC by means of PSS [283]–
[285] and HVDC links [286], and it has also been adopted
for pricing in WAC [287]. An `1-regularized H∞-control
approach is presented in [288]. A static H2-output feedback
problem for PSS design has been proposed in [289] using the
methods in [158]. Finally, it has recently been observed that
DC-segmented power systems are poset-causal [290] making
them amenable to decentralized H2 control as in [172].

The above recent references indicate that optimal decentral-
ized and distributed control techniques are very much suited
for wide-area damping control. We firmly believe that further
powerful optimal design methods will be successfully applied
to WAC problems in the near future. However, we emphasize
optimality is merely one side of the story, and robustness of
WAC to communication issues and changing system configu-
rations should not be sacrificed for performance.

V. CONCLUSIONS

After summarizing various power flow models and tech-
niques for distributed optimization, this paper has surveyed
the literature regarding offline distributed optimization and
control algorithms for a variety of power system applications.
Algorithms based on Dual Decomposition, the Alternating
Direction Method of Multipliers, Analytical Target Cascading,
the Auxiliary Problem Principle, Optimality Condition De-
composition, and Consensus+Innovation have shown promise
in solving a variety of power system optimization and control
problems. This paper then reviewed progress on online opti-
mization and control algorithms for the purposes of real-time
optimal power flow, optimal frequency control, and optimal
voltage control. Recent developments suggest the great poten-
tial of these approaches for power system control, but further
work is required to address a variety of open questions. Aside
from specific algorithmic questions, more general concerns of
distributed strategies relate to privacy issues, cyber-physical
security, as well as robustness to communication uncertainties
and failures.
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