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Abstract—The operation of power grids is becoming increas-
ingly data-centric. While the abundance of data could improve
system efficiency, it poses major reliability challenges. In particu-
lar, state estimation aims to find the operating state of a network
from the telemetered data, but an undetected attack on the data
could lead to making wrong operational decisions for the system
and trigger a large-scale blackout. Nevertheless, understanding
the vulnerability of state estimation with regards to cyberattacks,
which is a special instance of graph-structured quadratic sensing
problem, has been hindered by the lack of tools for studying the
topological and data-analytic aspects of networks. Algorithmic
robustness is critical in extracting reliable information from
abundant but untrusted grid data. For a large-scale power grid,
we quantify, analyze, and visualize the regions of the network
that are not robust to cyberattacks in the sense that there exists
a data manipulation strategy for each of those local regions that
misleads the operator at the global scale and yields a wrong
estimation of the state of the network at almost all buses. We
also propose an optimization-based graphical boundary defense
mechanism to identify the border of the geographical area in
which data have been manipulated. The proposed method does
not allow a local attack to have a global effect on the data analysis
of the entire network, which enhances the situational awareness
of the grid, especially in the face of adversity. The developed
mathematical framework reveals key geometric and algebraic
factors that can affect algorithmic robustness and is used to
study the vulnerability of the U.S. power grid in this paper.

Index Terms—Power system state estimation, CPS security,
robust algorithm, smart grid

I. INTRODUCTION

While real-world data abound for many complex systems,
they are often noisy and corrupted. Acquiring reliable infor-
mation from abundant but untrusted data is key to enhancing
cybersecurity for mission-critical systems such as the power
grid [1]. Since many of these systems are inherently network
structured, data analytics cannot be satisfactorily understood
without incorporating their underlying graph topologies.

For instance, consider the power system state estimation
(SE) problem, which constantly monitors the operating status
of the grid by filtering and fusing a large volume of data
every few minutes [2]. The significance of a functioning
SE could be inferred from the 2003 large-scale blackout, in
which the failure of SE contributed to the inability of the
operator to provide real-time diagnostic support [3]. Despite
substantial advances in algorithm design [2], [4]–[17], a major
obstacle still remains: the lack of a framework for the design
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of a robust and scalable algorithm together with a realistic
evaluation of its vulnerability. Developing such a framework is
challenging for three reasons: (a) the model of a power system
is highly nonlinear and nonconvex due to physical laws, (b)
computational resources required by existing algorithms grow
rapidly with the size of the system, and (c) the number of
scenarios involving adversarial conditions is too large for an
individual assessment of each scenario to be possible (it is
higher than the number of atoms in the observable universe
for systems with as low as 500 possible attack points). These
challenges have limited the scope of previous studies to simple
approximate models or conservative methods that ignore the
topology-dependent characterization of vulnerabilities [2], [4]–
[21]. Fundamentally, there is a lack of tools to deal with
untrusted data associated with nonlinear and structured (rather
than random) graphical models.

A. Graph-structured quadratic sensing
The graph-structured quadratic sensing problem includes SE

as a special instance and is stated as follows. Let v ∈ Cnb be
an unknown nb-dimensional complex-valued state vector. The
goal is to find v from a set of noisy quadratic measurements

yi = v
∗M iv + ωi + bi, ∀i ∈ [nm], (1)

where v∗ indicates the complex conjugate, M i is a known
nb × nb dimensional Hermitian matrix, ωi denotes a zero-
mean Gaussian random noise with standard deviation σ, and
bi denotes bad data that can take arbitrary values. Here, we
use the shorthand notation [n] = {1, ..., n}.

Based on the set of measurement matrices {M i}i∈[nm], we
construct an undirected graph G := {N ,L}, where N := [nb]
and L := [nl] represent the sets of nodes and edges, respec-
tively. The graph is constructed such that there is an edge
` := {f, t} that connects nodes f and t if there exists a sensing
matrix M i whose (f, t)th entry is nonzero, i.e., [M i]f,t 6= 0.
We are interested in the case where the measurement matrices
are sparse and produce a sparse computational graph G.

For SE, v consists of the voltages at all nodes of the
network and the measurements, such as voltage magnitudes
and real and reactive power flows over edges, are quadratic
[17], [22]. The bad data bi is either zero corresponding to a
correct measurement or nonzero corresponding to cyberattack,
communication failure, sensor fault, or deployment of a model
(i.e., measurement matrices M i) that does not match the
reality (e.g., a disconnected line is wrongly assumed to be
in service by the operator). It is not known a priori which bi’s
are nonzero. The graph G of SE coincides with or is a subset
of the physical topology of the gird, and therefore it is sparse.
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B. Related work

Different types of quadratic sensing problems have been
studied in the literature, which can be cateogrized based on
the assumptions made on the measurement matrices M i’s:
(i) matrix completion [23], [24] and robust principal compo-
nent analysis [25], [26] assume that each matrix M i has a
single nonzero element at a random location; and (ii) phase
retrieval [27] assumes that each matrix M i is rank-1. Existing
approaches to solve these problems include convex relaxation
[23], [25], [26] and iterative algorithms [24]. To obtain guaran-
tees of performance, a common theoretical condition is called
restricted isometry property [24]; however, this condition only
applies to dense and/or random matrices M i’s, while the
measurement matrices in our study are deterministic and
structured (due to the existence of an inherent graph structure).

Due to the prominence of SE, extensive works have been
conducted in the power system community. These methods
include: (i) linearization (a.k.a., DC approximation) [5], [28];
(ii) iterative algorithms such as Newton’s method [2], [29],
feasible point pursuit [30], and iterative convex program [8];
and (iii) global optimization techniques such as particle swarm
optimization [31], and semidefinite relaxation [11], [13], [14].
However, for methods in (i), the approximation error could
be arbitrarily large when the unknown voltage vector deviates
from the nominal state around which the linearization is per-
formed. For methods in (ii), due to the nonconvexity of solving
quadratic measurement equations, the algorithms can become
trapped at meaningless local minima or saddle points, which
do not provide a useful estimate of the state. For methods
in (iii), the primary disadvantage is their heavy computational
requirement or lack of theoretical guarantees on their ability to
reject bad data. Existing literature on cyberattack and defense,
such as the false data injection attack, has also been limited to
DC approximation models [4], [6], [12] , with the exception
of a few works on the nonlinear AC model [10], [32], [33].
However, it has been found that the mismatch caused by the
DC approximation of the AC grid renders either the defense
or the attack efforts futile [7], [9], [10]. Recently, a two-stage
linear/quadratic programming approach has been proposed in
[17], which advances the state of the art by providing a
computationally efficient algorithm with theoretical guarantees
of recovering the true state. However, the proposed condition is
hard to be satisfied and its verification requires the knowledge
of the support of the bad data, which is not known a priori.

C. Gap in the literature and our contributions

One common drawback of all the existing methods is that
the theoretical certificates used to reject bad data are provided
on a scenario-by-scenario basis, where each scenario corre-
sponds to one specific set of measurements that are corrupted
by bad data. Since there are an exponential number of ways to
attack the grid data (namely, 2m ways to decide on the zero-
nonzero pattern of bi’s in the case with m measurements), it
is impossible to make a meaningful general assessment of the
vulnerability of a grid based on a single scenario.

Another important missing factor is that the prior literature
aims to find the state of the system correctly under attacks,

Fig. 1: Vulnerability map of the modified U.S. power grid,
which consists of three AC interconnections, West, East, and
ERCOT, and shows the lines that satisfy the graphical mutual
incoherence condition proposed in the study (green lines) those
that do not (red lines).

while this is theoretically impossible when the data for a
sub-network of the system is strategically manipulated. In
this case, the state for that region becomes unobservable (not
recoverable) from the clean data for the rest of the system.
To elaborate, let v and v̂ be the true and the estimated states,
respectively. Let R denote the subnetwork under a cyberattack,
and vR and v\R be the voltages for the attacked region and
the remainder of the system, respectively. The existing works
aim to find v̂ such that the global metric ‖v−v̂‖ is minimized,
i.e., global recovery, which is not possible since ‖vR − v̂R‖
can be arbitrarily large; therefore, it is more realistic to focus
on ‖v\R − v̂\R‖, i.e., local recovery.

This paper is the first work to develop a mathematical
framework for local recovery. On the application impact, our
method provides the first vulnerability map for the entire U.S.
grid, as shown in Fig. 1. Based on the graphical mutual
incoherence condition to be discussed next, we can categorize
each edge as either robust or vulnerable. On this map, if the
connections between the region R and the rest of the grid are
all robust edges, then no matter how the measurements inside
the region are modified, the estimation error is only limited to
this region and cannot propagate out of the boundary formed
by the robust lines to affect the rest of the grid in terms of
‖v\R− v̂\R‖. If even one edge in the surrounding subnetwork
is vulnerable, then it is possible for the estimation error to
propagate to the rest of the grid. Importantly, this vulnerability
map is obtained without knowing the attack locations, and
therefore it provides a universal measure that applies to an
exponential number of possible attack scenarios.

The rest of the paper is organized as follows. A two-stage
algorithm for quadratic sensing is introduced in Sec. II. Sec.
III discusses the graphical mutual incoherence conditions. The
boundary defense mechanism is introduced in Sec. IV. Sec.
V develops an important application in SE to map the geo-
graphic vulnerabilities and how the network and optimization
properties can influence vulnerability. Concluding remarks are
given in Sec. VI. All the proofs are provided in the Appendix.

Notations: We use R and C as the sets of real and complex
numbers. The cardinality |J | of a set J is the number of
elements in a set. The support supp(x) of a vector x is the
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set of indices of the nonzero entries of x. For a set J ⊂ [m],
we use J c = [m] \J to denote its complement. The symbols
(·)> and (·)∗ represent the transpose and conjugate transpose
operators. We use <(·), =(·) and Tr (·) to denote the real part,
imaginary part and trace of a scalar/matrix. The imaginary unit
is denoted as

√
−1. The notations ∠x and |x| indicate the angle

and magnitude of a complex scalar. We use λmin(A) to denote
the smallest eigenvalue of A, and A � 0 to indicate that A is
a positive semidefinite matrix. We denote xR as the subvector
with entries of x indexed by R, AR as the submatrix with
R rows of A, and AR,J as the submatrix with R rows and
J columns of A. We use ‖ · ‖∞ to denote the matrix infinity
norm and ‖ · ‖F to denote the Frobenius norm.

II. TWO-STEP PIPELINE OF ROBUST QUADRATIC SENSING

This section describes a two-stage robust quadratic sensing
algorithm, where the first stage involves a conic optimization
and the second stage can be computed with a closed-form
equation. We will analyze this algorithm in Sec. III, which
will be shown to be more robust to bad data than the algorithm
in [17]. Since v, b and w are unknown, henceforth we use
these notations to show the corresponding variables and use
the notations v\, b\ and w\ to denote their true values.

A. Stage 1: Estimation in the lifted space
In the first stage, we estimate a set of variables in a lifted

space that are linked through the underlying state v. Specif-
ically, for a given computational graph G := {N ,L} based
on the measurements {M i}i∈[nm], we introduce two groups
of variables: (i) nodal variables, xmg

k := |vk|2, for each node
k ∈ N , and (ii) edge variables, denoted as xre

` := <(vfv∗t ) and
xim
` := =(vfv∗t ) for each edge ` ∈ L with the endpoints f and
t (note that in this case we do not create separate edge variables
corresponding to the (t, f)-th entry). Let x(v) ∈ X ⊆ Rnx

be the collection of the lifted variables in a vector form (we
often omit the dependence on v and just write x), where X
is the corresponding lifted space. By the construction of the
lifted variables, the measurement model (1) can be written as:

y = Ax(v\) + w\ + b\, (2)

where A ∈ Rnm×nx is the sensing matrix, v\ ∈ Cnv

and x\ := x(v\) ∈ X are the true voltage state and the
corresponding state in the lifted space, y ∈ Rnm is the set
of measurements, w\ ∈ Rnm denotes random noise, and b\ ∈
Rm is the bad data. Note that the ith row of A, denoted by
ai, is constructed by taking the entries in M i corresponding
to the lifted variables such that a∗ix(v) = v

∗M iv for all v.
First, we solve a convex optimization to minimize the Huber

loss subject to second-order cone constraints (SOCs):

min
x∈K

nm∑
i=1

fHuber(yi − [Ax]i;λ), (3)

where fHuber(r;λ) =

{
1
2r

2 |r| ≤ λ
λ(|r| − 1

2λ) |r| > λ
is the standard

Huber loss parametrized by λ, and the feasible set K is{
x
∣∣∣ H`(x) � 0, ∀` := {i, j} ∈ L

}
, (4)

where

H`(x) =

[
xmg
i xre

` +
√
−1xim

`

xre
` −
√
−1xim

` xmg
j

]
(5)

is a 2×2 matrix constructed for line ` := {i, j}. By standard
techniques in convex analysis, the SOC can be equivalently
written as:

H`(x) � 0 ⇐⇒ c>` x ≥ ‖D`x‖2 , (6)

where c` ∈ Rnx is defined such that c>` x = 1√
2
(xmg
i + xmg

j )

for all x ∈ X (i.e., c` has coefficients 1√
2

at locations corre-
sponding to xmg

i and xmg
j ), and D` ∈ R4×nx is defined such

that D`x =
[

1√
2
xmg
i

1√
2
xmg
j xre

` xim
`

]>
for all x ∈ X .

Let the solution to (3) be denoted by x̂. We can estimate
the bad data vector by

b̂i = sign(yi − a∗i x̂)max (0, |yi − a∗i x̂| − λ) ,

which turns out to be optimal for a mixed `1, `2 optimization
that is equivalent to (3) (see Lemma 4 in the appendix).

Remark: Despite the wide usage of Huber loss in the
literature, existing studies are limited to unconstrained cases
and are ignorant of the computational graph [2], [16], [34]. We
will analyze the SOC constrained case and study its robustness
on a graph.

B. Stage 2: Projection to the lower-dimensional space

Based on the solution in Stage 1, the next stage reconstructs
the state by projecting a solution x̂ of (3) back to the original
lower-dimensional space. To do so, we construct a vector v̂
such that: (i) the magnitude at each node k ∈ N can be
obtained by |v̂k| =

√
x̂mg
k ; and (ii) select an acyclic subgraph

of G with the maximum number of edges and define the phase
difference along each edge ` := (i, j) of this subgraph as
θ̂ij = arctan x̂im

` /x̂
re
` . To estimate the phases at all nodes, we

compute the following least-square solution:

θ̂ = (L>L)−1L>θ∆, (7)

where θ∆ is the collection of θ̂ij and L ∈ Rñl×nb is a sparse
matrix with L(`, i) := 1 and L(`, j) := −1 for each edge
` := {i, j} of the acyclic subgraph and zero elsewhere (ñl
denotes the number of edges of the subgraph). Finally, we
can reconstruct an estimate of the true state v\, denoted as v̂,
via the formula:

v̂k = |v̂k|e
√
−1θ̂k , k ∈ N . (8)

If the regression vector from Step 1 is exact, i.e., x̂ = x\, then
(8) accurately recovers the system state, i.e., v̂ = v\. If the x̂
is not exact, as long as the effect of bad data is significantly
controlled, (7) has favorable properties and allows controlling
the estimation error.

III. GRAPHICAL MUTUAL INCOHERENCE

In this section, we discuss the proposed graphical mutual
incoherence condition. A node k is said to be under attack and
is denoted as k ∈ Nat if any measurement that depends on
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the nodal variable xmg
k or edge variables xre

` and xim
` (with `

incident with k) is corrupted by bad data. For a given attack
scenario, we define a partition of the network below.

Definition 1. Given a measurement graph G := {N ,L}, we
partition the graph as follows:
• Attacked region Bat := {Nat,Lat} is the subgraph

induced by attacked nodes Nat

• Inner boundary Bbi is the subgraph induced by the
nodes adjacent to the attacked nodes, defined as Nbi :=
{i ∈ N \ Nat | ∃j ∈ Nat, s.t. {i, j} ∈ L}

• Outer boundary Bbo is the subgraph induced by the
set of nodes adjacent to the inner boundary nodes but
not including the attacked nodes, defined as Nbo :=
{i ∈ N \ (Nat ∪Nbi) | ∃j ∈ Nbi, s.t. {i, j} ∈ L}

• Boundary region Bbd := {Nbd,Lbd} is the subgraph
induced by the nodes in Nbd := Nbi ∪Nbo

• Safe region Bsf := {Nsf ,Lsf} is the subgraph induced by
the remaining nodes, i.e., Nsf := N \ (Nat ∪Nbd)

Moreover, we define Lat∩bi as the set of edges that connect
nodes in Nat to nodes in Nbi, and Lbi∩bo as the set of edges
that connect nodes in Nbi to nodes in Nbo.

…

…

Attacked inner 
region ℬ"#

Attacked inner 
boundary ℬ$%

Unaffected region
ℬ&' = 𝒢 ∖ (ℬ"# ∪ ℬ$-)

Unaffected outer 
boundary ℬ$/

Affected region 
ℬ = ℬ"# ∪ ℬ$%

Attacked boundary 
ℬ$- = 	ℬ$% ∪ ℬ$/

Fig. 2: Illustration of the partition introduced in Def. 1. Lines
or buses whose measurements are under attack are marked red.

The partition set notations are illustrated in Fig. 2. Now, we
introduce a partition of the measurements and variables.

Definition 2. Given a partition of the graph according to
Def. 1, we partition the variables in x as follows:
• Attacked variables xat, consisting of nodal variables for
Nat (i.e., xmg

k for k ∈ Nat) and edge variables for Lat∪
Lat∩bi (i.e., xre

` and xim
` for ` ∈ Lat ∪ Lat∩bi)

• Boundary variables xbd, consisting of nodal variables
for Nbd and edge variables for Lbd

• Safe variables xsf , consisting of all other variables
Accordingly, we denote x\at, x\bd and x\sf as the partition
of the true state vector x\; and x̂at, x̂bd and x̂sf as the
partition of the estimated state vector x̂. We also denote nat,

nbd and nsf as the number of variables in xat, xbd and xsf ,
respectively. The measurements are partitioned as follows:
• Attacked measurements Mat, consisting of those that

depend on xmg
k for some k ∈ Nat, and/or xre

` and xim
`

for some ` ∈ Lat

• Inner boundary measurements Mbi, consisting of those
that depend on xmg

k for some k ∈ Nbi and xre
` and xim

`

for some ` ∈ Lat∩bi

• Outer boundary measurements Mbo, consisting of those
that depend on xmg

k for some k ∈ Nbo and xre
` and xim

`

for some ` ∈ Lbd

• Boundary measurementsMbd :=Mbi∪Mbo, including
both the inner and outer boundary measurements

• Safe measurements Msf , consisting of the remaining
measurements

The above definition allows one to “rearrange” the matrix A
in the following form such that the attacked and safe regions
become “weakly coupled” through the boundary region:

A =


AMsf ,Xsf

AMsf ,Xbd
0

0 AMbo,Xbd
0

0 AMbi,Xbd
AMbi,Xat

0 0 AMat,Xat

 . (9)

Remark: The above partition exploits the sparsity of the
computational graph to weakly isolate the attacked region and
the safe region. We will illustrate the direct benefit of such
partitioning below. However, the challenge is that the partition
is not known a priori, which motivates the graphical mutual
incoherence condition in Sec. III-B.

A. Preliminary results
We first introduce some regularity conditions.

Condition 1 (Measurement normalization). Let ai be the ith

row ofA. Assume that all rows are normalized, i.e., ‖ai‖2 = 1
for all i ∈ [nm].

This condition is straightforward to implement in practice,
since the sensing matrix A is fixed for a given set of measure-
ments. This is also known as preconditioning, which assists
with the statistical performance of regression.

Condition 2 (Lower eigenvalue). Let QMbd,Xbd
:=[

AMbd,Xbd
I>Mbi

]
. Then, the lower eigenvalue bou d Cmin

is defined as

min

{
λmin

(
Q>Mbd,Xbd

QMbd,Xbd

)
,

λmin

(
A>Mbo,Xbd

AMbo,Xbd

)
, (10)

λmin

(
A>Msf ,Xsf

AMsf ,Xsf

)}
≥ Cmin.

The value Cmin characterizes the identifiability of x\ outside
the attacked region for a given set of measurements. If Cmin is
strictly positive and one can accurately detect the support of
bad data, then this condition ensures the accurate estimation of
x\ outside the attacked region. To analyze the algorithm that
incorporates SOCs, we also need to introduce the following
condition.
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Condition 3 (Non-binding SOCs at boundary). Define the sets

Kbd :=
{
xbd

∣∣∣ H`(x) � 0, ∀` ∈ Lbd

}
, (11)

Kat :=
{
xat

∣∣∣ H`(x) � 0, ∀` ∈ Lat ∪ Lat∩bi

}
, (12)

for boundary and attacked variables, respectively, and let

K̃at(x̂bd) =

{
xat

∣∣∣ H`(x) � 0,∀ ∈ Lat ∪ Lat∩bi,

and x such that xbd = x̂bd

}
,

be the confined feasible set for xat with the boundary variables
fixed at x̂bd in the SOC constraints. We say that the solution
x̂at satisfies the non-binding condition if x̂at ∈ K̃at(x\bd).

This condition simply requires that the values of the esti-
mated attack variable and the true boundary variable lie within
the set defined by SOCs. When there is an attack on a local
region, a subset of the local measurements are compromised.
Our goal is to recover the states outside the attacked region,
namely local recovery, rather than for the entire network,
namely global recovery. The following lemma provides a
preliminary result for solving the estimation problem in the
absence of dense noise.

Lemma 1 (SOCP). Suppose that there is no dense noise (i.e.,
w = 0 in (2)), and that the lower eigenvalue condition is
satisfied. Assume that for an arbitrary bMbd

with its support
limited to the inner boundary, the solution x̂bd ∈ Xbd to the
program

min
xbd∈Kbd

‖zMbd
−AMbd,Xbd

xbd‖1, (13)

is unique and satisfies x̂bd = x\bd, where zMbd
=

AMbd,Xbd
x\bd + bMbd

, and that the solution x̂at to

min
xat∈Kat

‖yMat
−AMat,Xat

xat‖1, (14)

also satisfies the non-binding condition. Then, the solution x̂
to the conic program:

min
x∈K
‖y −Ax‖1 (15)

satisfies x̂bd = x\bd and x̂sf = x\sf .

Intuitively, conditioning on the boundary variables xbd, the
attacked variables xat and safe variables xsf are independent,
which can be regarded as decoupling the “weakly coupled”
system. Therefore, if the boundary variables are correct (by
assumption), then the safe variables can be recovered. The
proof of this lemma is based on carefully analyzing the
Karush-Kuhn-Tucker (KKT) conditions. Since the proof can
be derived based on the proof of Theorem 1 in Sec. IV, which
is more general, we omitted the details.

The key assumption in the previous results is the unique-
ness and correctness of solving (13). However, verifying this
assumption requires enumerating over the support of bad data,
which can have an exponential number of possibilities. This
motivates the development of a new condition below.

B. Graphical mutual incoherence

We propose the notion of graphical mutual incoherence
(gMI) as a sufficient condition to certify the recovery of the
boundary variables in the presence of arbitrary bad data. To
this end, we introduce the following concepts.

Definition 3. Given an edge ` := {i, j} with node i in the
attacked region and node j in the inner boundary, define local
partitions as follows:
• Local attack region Bi→jat := {{i}, ∅} has only one node
• Local inner boundary Bi→jbi := {{j}, ∅} has only one

node
• Local outer boundary Bi→jbo := {N i→j

bo ,Li→jbo } is the sub-
graph induced by nodes other than i that are connected
to j, i.e., N i→j

bo := {k ∈ N \ {i} | {j, k} ∈ L}
• We also use Li→jbd to represent the union of edges that

connect nodes in Bi→jbi and those in Bi→jbo

Similarly, we introduce the local versions of the partitions of
variables and measurements:
• Local boundary variables X i→jbd include
{xmg

k }k∈Bi→j
bi ∪B

i→j
bo

and {xre
η , x

im
η }η∈Li→j

bd

• Local boundary measurementsMi→j
bd :=Mi→j

bdX∪M
i→j
bd×

include those that depend only on the boundary variables
X i→jbd , denoted byMi→j

bdX, and those that depend on both
X i→jbd and variables {xre

` , x
im
` } for ` := {i, j}, denoted

by Mi→j
bd×

We also let ni→jX = |Mi→j
bdX|, n

i→j
× = |Mi→j

bd×|, and ni→jL =

|Li→jbd | be the number of correct measurements, the number
of wrong measurements, and the number of boundary lines,
respectively. The above terms can be similarly defined for the
direction j → i. Thus, for each line, we have two sets of
boundary variables and measurements.

With the above notations, we can now define the graphical
mutual incoherence (gMI). To begin with, we introduce the
gMI for the estimation problem (3) without the SOCs, which
coincides with the algorithm in [17].

Definition 4 (gMI for estimation without SOCs). For each line
` = {i, j} ∈ L, define the graphical mutual incoherence αi→j
along the direction i → j as the globally optimal objective
value of the following optimization problem:

max
ξ∈{−1,+1}n

i→j
×

min
α∈R,h∈Rn

i→j
X

α (16a)

s.t. A>Mi→j
bdX,X

i→j
bd

h+A>Mi→j
bd×,X

i→j
bd

ξ = 0 (16b)

‖h‖∞ ≤ α (16c)

Similarly, we can define gMI αj→i for the direction j → i.

Intuitively, gMI measures the correlation between the cor-
rect data and the corrupted data. The name “mutual incoher-
ence” originates from the compressed sensing literature [35],
[36]. However, the gMI proposed in this study is different.
First, gMI is defined on a single line, and we build a theoretical
certificate from bottom up by leveraging the graph topology.
This alleviates the dependence on each instance of the bad
data support. Second, as we will introduce in Sec. IV, gMI can
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be applied to local recovery, while existing conditions in the
literature are all designed for global recovery. Also, gMI can
be solved efficiently (see Sec. III-C), while other conditions
cannot be easily verified for large-scale systems. Moreover,
we show that gMI is much less conservative than the existing
conditions. Next, we extend the definition to the estimation
problem (3) proposed in this work.

Definition 5 (gMI for estimation with SOCs). For each edge
` = {i, j} ∈ L and a given x ∈ K, define the gMI αSOCP

i→j (x)
along the direction i→ j as the globally optimal value of the
following optimization problem:

max
ξ∈{−1,+1}n

i→j
×

min
α∈R,ω∈Rn

i→j
L ,h∈Rn

i→j
X

α (17a)

s.t. ‖h‖∞ ≤ α (17b)

ω` ≥ 0, ∀` ∈ Li→jbd (17c)

A>Mi→j
bdX,X

i→j
bd

h+A>Mi→j
bd×,X

i→j
bd

ξ +
∑

`∈Li→j
bd

ω`T `x = 0 (17d)

where T ` = c`c>` −D
>
` D`. The gMI αSOCP

j→i (x) for direction
j → i can be defined similarly.

The closest condition that measures the alignment of the
sensing directions of the corrupted measurements (i.e., AJ ,
where J is the support of the bad data) with those of the
clean data (i.e., AJ c ) has been proposed in [17]. For each
edge ` ∈ L, the mutual incoherence metric defined in [17] is
given by:

ρ(Mi→j
bd×) = ‖A

>+

Mi→j
bdX,X

i→j
bd

A>Mi→j
bd×,X

i→j
bd

‖∞,

where A+
J = (A>JAJ )

−1A>J denotes the pseudo-inverse. We
next show the relationship among these measures.

Proposition 1. For each edge ` ∈ L, it holds that

ρ(Mi→j
bd×) ≥ αi→j ≥ α

SOCP
i→j (x)

for any x ∈ K.

As we will see in Sec. IV, boundary defense requires a
low value for gMI or mutual incoherence. The above result
implies that gMI is always less conservative than the mutual
incoherence proposed in [17], and the incorporation of SOCs
can certifiably improve robustness.

C. Computational aspect

The minimax programs (16) and (17) used to define gMIs
consist of a convex optimization in the inner minimization
and a discrete optimization in the outer maximization. For
problems where the number of measurements in Mi→j

bd× is
not large, it is computationally tractable to enumerate all the
feasible points in the outer maximization. This is the case
in our experiments for the power system state estimation.
Based on standard convex analysis, we have developed a
more scalable method for the case with a large ni→j× by
reformulating the problem as a linear complimentarity problem
(LCP) [37], which can be solved readily using off-the-shelf
solvers such as PATH Solver [38] or YALMIP. Alternatively,

we can reformulate the complimentarity slackness conditions
as a mixed-integer program, and solve the problem using
standard packages such as Gurobi.

IV. BOUNDARY DEFENSE MECHANISM

In this section, we first establish that global defense is
certified if the gMI conditions are satisfied for all the lines
on the boundary. Then, we derive theoretical guarantees for
bad data detection and estimation error. Although we focus on
the estimation problem (3), the technical proof can be easily
adapted to the case without the SOCs, which corresponds to
the unconstrained program of (3).

Define

A◦ =

AMsf ,Xsf
AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd


as a subset of A that removes the rows and columns cor-
responding to Mat and xat, respectively. Similarly, define
c◦` and D◦` as the subvector and submatrix of c` and D`

that remove the entries or rows corresponding to xat, respec-
tively. We also define Q◦Mbi

=
[
A◦ I◦>Mbi

]
and Q◦+Mbi

=

(Q◦>Mbi
Q◦Mbi

)−1Q◦>Mbi
as its pseudo-inverse, and let Ix and Ib

be the matrices that consist of the first nbd+nsf rows and the
last |Mbi| rows of the identity matrix of size nbd+nsf+|Mbi|,
respectively.

Condition 4 (gMI condition). The gMI condition is satisfied
if αSOCP

i→j ≤ 1 − γ for all {i, j} ∈ Lat∩bi with i ∈ Nat and
j ∈ Nbi, for some positive constant γ.

Given an attack scenario Nat, the gMI condition can be
verified by checking every line in the boundary. Since the gMI
considers the worst-case guarantee and is independent of the
attack scenario, a single map of gMI can be used to verify an
exponential number of attack scenarios. If the condition is not
satisfied, one can artificially increase the set Nat by adding the
nodes of violated gMI into the attack set until the condition
is met. We will provide a vulnerability map of the U.S. grid
in Sec. V based on this concept. The main result of this paper
is provided below.

Theorem 1. Assume that the gMI condition is satisfied with a
constant γ > 0, and that the lower eigenvalue condition and
the non-binding SOCs condition are satisfied. Suppose that the
hyperparameter λ in Huber loss is chosen such that

λ >
2

nmγ

√
2σ2 log nm. (18)

Then, the following properties hold for the solution to (3),
denoted as (x̂, b̂):

(1) The solution (x̂, b̂) has no false bad data inclusion (i.e.,
supp(b̂) ⊆ supp(b\)) with probability greater than 1−
c0
nm

, for some constant c0 > 0.
(2) Define g(λ) as

nmλ

(
1

2
√
Cmin

+ ‖IbQ◦+Mbi
‖∞
)
,

and let b̃Mbi
= AMbi,Xat(x\at − x̂at) be the mismatch

at the boundary caused by a potentially false estimate
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of x̂at. Then, all bad data with magnitude greater than
g(λ) will be detected (i.e., if |b̃i| > g(λ), then |b̂i| > 0)
with probability greater than 1− c2

m .
(3) (Bounded error) The estimator error is bounded by

‖x\Xsf∪Xbd
− x̂Xsf∪Xbd

‖2

≤ t
√
|Xsf |+ |Xbd|+ |Mbi|

Cmin
+ nmλ‖IxQ◦+Mbi

‖∞,2

with probability greater than 1− exp
(
− c1t

2

σ4

)
.

The proof of the theorem is shown in Appendix C. Inspired
by Sec. III-A, a key step in establishing the result is to ensure
that local defense is sufficient to guard against attacks when
solving the problem globally. In appendix B, we prove that as
long as the gMI condition is met, we have a desirable property
in terms of defending against bad data on the boundary.
While the theorem only focuses on (3), the result for the
unconstrained optimization can be derived similarly. The main
advantage of (3) over the case without SOCs is that the gMI
condition is more likely to be satisfied due to Prop. 1.

Theorem 1 provides formal guarantees of bad data detection.
From the measurements, we first estimate the variables in the
lifted space using first-stage algorithm (3). Then, we threshold
the estimated bad data vector to determine its support. By
result (1) above, for large nm, with high probability the
support will be confined within the attacked region; by (2),
corrupted measurements with large enough magnitudes will be
detected. Thus, our approach can be used to detect the attacked
region and guarantee the lifted variables in the boundary and
safe region can be recovered accurately by result (3). Finally,
the recovered lifted variables are fed into the second-stage
algorithm (7) and (8) to produce a state estimation.

V. EXPERIMENTS

A. Power system state estimation

Power system state estimation is an important instance
of graph-structured quadratic sensing. The electric grid is
modeled as a graph G := {N ,L}, where N := [nb] and
L := [nl] represent its sets of buses (i.e., nodes) and branches
(i.e., edges). The power system state is described by the
complex voltage v =

[
v1, ..., vnb

]> ∈ Cnb , where vk ∈ C
is the complex voltage at bus k ∈ N with magnitude |vk| and
phase θk := ∠vk. By Ohm’s law, the measurements obtained
by the supervisory control and data acquisition (SCADA)
system, including voltage magnitude squares, real and reactive
power injection at each bus, and real and reactive power flow
along each branch can be represented in the form of quadratic
measurements (1). The Hermitian matrix M i follows the
graph-induced sparsity pattern; therefore, the physical graph
coincides with the computational graph. The goal of SE is
to reliably infer about the underlying state v given noisy and
corrupted measurements yi.

Here, we focus on the U.S. grid, which is the largest
machine on earth with more than 200,000 miles of transmis-
sion lines. Due to confidentiality requirements, we report our
findings on modified grids provided in [39], which match the
size, complexity, and characteristics of actual grids.

A B C

Fig. 3: Evaluation of the boundary defense mechanism. (A)
The grid is under “zonal attack,” where the measurements
within a zone are corrupted (shown in red). SE based on
(B) Newton’s method for nonlinear least squares, and (C) the
proposed method with SOCs, where in both cases, buses with
an estimation error greater than 0.002 are marked in red.

B. Adversary model and zonal attack

We are concerned with the scenario where the data for
an entire subregion are compromised. We assume that the
attacker has access to the model and can manipulate every
measurement within the region under attack in an arbitrary
way. Specifically, we consider the “zonal attack” (Fig. 3),
where all measurements within a zone—usually governed by
a single utility—are corrupted. In this example, we consider
the ERCOT network with 2,000 nodes, where a subgraph
around Houston with about 19 nodes are under attack. In this
case, Newton’s method is seriously affected by the bad data,
whereas our proposed method can recover the state outside the
attacked zone correctly. In the case of a stealth attack, there is a
problem of symmetry, namely, without additional information,
it is impossible to decide which zone is under attack since the
only inconsistency is observed at the boundary. To avoid this
case, we arbitrarily break the symmetry by introducing some
sensors within the attacked zone that are more secure than
others in such a way that their values cannot be modified.

C. Geographic mapping of vulnerabilities

Based on the mathematical tools developed in the study, we
assess the robustness of the synthetic U.S. grid.

Definition 6. A line {i, j} ∈ L is said to be a robust line
if αi→j < 1 and αj→i < 1; otherwise, it is said to be a
vulnerable line (V-line).

A B

Fig. 4: Vulnerability maps based on the proposed gMI (A)
without SOCs (16) and (B) with SOCs (17), which marked
robust lines (in green) and vulnerable lines (in red).
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A B

Fig. 5: Comparison of bus critical index with and without
SOCs. Since the bus critical indices are no larger than 3, we
only show the locations with values 2 (yellow) and 3 (red) for
gMIs (A) without SOCs and (B) with SOCs.

First, we visualize the geographic distribution of robust and
vulnerable lines for the Eastern U.S. grid in Fig. 4. It can
be seen that the density of vulnerable lines is relatively high
for populated areas, such as Boston and New York, where we
also observe a high density of robust lines. On average, 59%
lines are robust across the states, which are then split further
into independent synchronous regions, as shown in Table I. In
addition, the map validates Proposition 1 that the incorporation
of SOCs can help rectify SE and better detect bad data.

The vulnerability map can be used in various ways. For
instance, it can be used to investigate whether topological
errors for a line or a substation can be contained locally, in
which case the associated measurements are largely biased.

Definition 7 (Critical bus and critical line). For a node i ∈ N ,
if there exists a neighboring node j such that αi→j ≥ 1, then
the node i is called a critical bus (C-bus). A branch {i, j} ∈ L
is a critical branch (C-line) if there exists a node k adjacent
to either i or j such that αi→k ≥ 1 or αj→k ≥ 1 (or both
conditions are satisfied).

Specifically, if the erroneous line/substation is surrounded
by robust lines, then it is guaranteed by Theorem 1 that
the error will be contained locally via the boundary defense
mechanism. Otherwise, there is a possibility that the error will
“escape” outside the boundary to affect the outside region.
Summary statistics are shown in Table I.

D. Criticality index for substations under cyberattack

Furthermore, we can extend the case study by defining a
criticality index (CI) for each substation.

Definition 8 (Criticality index). Given a node i1, an arbitrary
node in is path-connected to i1 if there is a path i1, i2, ..., in
such that αik→ik+1

≥ 1 for k = 1, ..., n − 1. The criticality
index at node i is defined as the number of nodes that are
path-connected to i.

The CI gauges how many nodes near a substation will be
affected if the substation is under attack. The higher the value
is, the more crucial the situation is when the substation is
compromised. This situation is analogous to the cascading
failures of generators, but the difference is clear—our focus

is on the algorithmic robustness rather than the physical
dynamics. We visualize the distribution of the CIs on the map
shown in Fig. 5. It can be observed that (i) the highest number
is 3; and (ii) the incorporation of SOCs improve CIs.

E. Network and optimization properties

So far, our study has been conducted with respect to a
specific measurement profile. Important questions are: How
do the number and locations of measurement sensors affect
line vulnerability? In particular, does decreasing the number of
sensors make the network significantly more vulnerable? What
type of sensor measurements can bolster boundary defenses?

For this purpose, we examine three methods used for
“measurement selection.” The first method (Method 1) starts
from a spanning tree of the network and adds a set of lines
to the tree incrementally to obtain a subgraph that will be
used for taking measurements. In this method, each bus is
equipped with only voltage magnitude measurements and each
line has three out of four branch flow measurements. The
second method (Method 2) starts with the full network, where
each node has voltage magnitude measurements, and each line
has one real and one reactive power measurement, and it grows
the set of sensors by randomly adding branch measurements.
The third method (Method 3) differs from Method 2 only in
that it grows the set of sensors by randomly adding branch
measurements as well as nodal power injections.

To evaluate these three methods, we devise a “scattered
attack” strategy, where we randomly select 25 lines from
the 2000-bus Texas interconnection and corrupt all of its
branch measurements, which amounts to roughly 100 bad
pieces of data. We then employ our proposed SE method. The
observation is that, in general, both the root mean squared
error (RMSE) and the F1 score for bad data detection are
enhanced as more sensors are added to the network, as shown
in Fig. 6. The F1 score is given by 2precision×recall

precision+recall , where
precision is the rate of true positives (i.e., correctly identified
bad data) among all data that are claimed to be bad, whereas
recall is given by the percentage of true positives identified
as bad data among all ground truth bad data. Specifically, an
F1 score close to 1 indicates that the algorithm detects all
corrupted data (high recall rate) and does not falsely blame
the correct data (high precision rate).

There is also a major discrepancy among the above methods
for the same level of measurement redundancy. For instance,
Method 1 significantly outperforms the other two methods at
a low redundancy rate, whereas Method 2 steadily outmatches
Method 3 with more sensors. To explain this phenomenon, we
need to examine the types of available measurements. Thus,
we select five typical measurement profiles as snapshots of Fig.
6 and calculate the percentage of V-lines and C-lines, and the
average CI in each case (Fig. 7). It turns out that the inclusion
of voltage magnitude or branch flow measurements can en-
hance the robustness, whereas the addition of nodal power
injections is a major factor in weakening the defense. For
example, with only voltage magnitude and branch flow mea-
surements, the network is almost “everywhere defendable.”
On the contrary, with the inclusion of nodal injections, even
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TABLE I: Summary statistics of network properties and vulnerability characteristics. We show the percentage of V-lines
and C-lines among all network lines, and the percentage of C-buses among all network buses for QP and SOCP. We also show
the average bus critical index, which measures the influence of a single-bus attack on the rest of the network.

Basic properties Properties of gMI (16) Properties of gMI (17)

Buses Lines V-lines C-lines C-bus Bus CI V-lines C-lines C-bus Bus CI

Texas 2,000 3,206 .3762 .4251 .4775 .20 .2979 .3674 .4225 .06

Western 10,000 12,706 .4715 .5231 .5313 .15 .3979 .4636 .4860 .06

Eastern 70,000 88,207 .4932 .5415 .5327 .14 .4104 .4780 .4810 .05

●

●

●
●

●●●
●●●

●●

● ●
● ●

●
● ●

●
●

●

●

●
●

●
●

●

●
●

●
● ●

●

●

●

●

●

0.001

0.010

0.100

2 3 4 5
RMSE

R
ed
un
da
nc
y

●●●●●●●●●●●●

●

●
●

●
● ●

● ● ● ● ●
● ● ●

●
●

●

●
●

●
● ● ● ● ● ●

0.2

0.6

1.0

2 3 4 5
RMSE

R
ed
un
da
nc
y

●●●●●●●●●●●●

●

●
●

●
● ●

● ● ●
● ●

● ● ● ● ●

●

●
●

●
●

● ●
● ● ●

0.2

0.6

1.0

2 3 4 5
RMSE

R
ed
un
da
nc
y

A B

R
M
SE

Redundancy Redundancy

R
M
SE

Method 1

Method 2

Method 3

Fig. 6: Comparison of different measurement profiles and
redundancy. The redundancy value is calculated as the number
of sensors divided by 2 × nb(number of buses) − 1, which
represents the degrees of freedom in the traditional power flow
problem. Each point for the (A) RMSE and (B) F1 score is
obtained by averaging over 100 independent simulations. The
average value is shown by the solid line, and the 5% and 95%
quantiles are shown by the shaded region.
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Fig. 7: Characterization of vulnerability based on measurement
profiles. The five measurement profiles are: full nodal mea-
surements and two/three/four branch flows per line (I/III/IV);
real and reactive power injections per bus and three branch
flows per line (II); and voltage magnitude per bus and three
branch flows per line (V). For SEs with (green bar) and without
(red bar) SOCs, we show the percentage of (A) V-lines, (B)
C-lines, and (C) C-buses within the Texas interconnection.

with a high rate of branch flow measurements, the network
is still vulnerable. Intuitively, this situation occurs because
nodal power injections are highly coupled measurements that
depend on state variables for all lines connected to the node.
In contrast, voltage magnitudes and branch flows are more
localized in nature, and, when corrupted, they have a smaller
effect on adjacent buses/lines.

In addition to the measurement set, network vulnerability
also depends on topological properties. In particular, our
findings show that the connectivity degree for each node is
positively correlated with line vulnerability (Fig. 8(A)). A
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Fig. 8: Characterization of vulnerability through nodal degrees.
(A) Percentage of V-lines when the nodes are at the boundary
or in the attacked region. In this case, we distinguish the two
directions of a line. Percentage of (B) C-lines and (C) C-
buses averaged over nodes with the same degree. Since the
distribution of nodal degrees is light-tailed, we group nodes
of degree eight or higher in the same bin.

boundary defense node is increasingly likely to defend against
attacks as the degree increases. However, this trend is less
obvious when the node is under attack, since high-degree
nodes have more measurements from the region not under
attack to leverage in order to rectify the corrupted lines. On
the other hand, it is more likely that a line will be critical if it
is connected to a high-degree bus, as shown in Fig. 8(B). This
criticality can be explained via the definition of a critical line,
and as long as at least one of the remaining lines incident to
that bus is vulnerable, the error will propagate out through that
vulnerable line. Similarly, a high-degree node is more likely
to be a critical bus.

As for the optimization property, Proposition 1 indicates that
the incorporation of SOCs always improves line robustness,
which can be verified visually in Fig. 4 and observed in Fig.
7 for different measurement profiles.

VI. CONCLUSION

Our vulnerability analysis of graph-structured quadratic
sensing is distinguished from previous works by its scalability
but also by the strong formal guarantees of a boundary defense
against cyberattacks and a localized vulnerability assessment
that accounts for network and optimization properties. This
study provides a set of notions and tools—the development of
graphical mutual incoherence, the boundary defense mecha-
nism, and the analysis of topological and optimization relations
to vulnerability—that are applicable to a wide range of graph-
structured data. Furthermore, our result offers a scientific
foundation for vulnerability-based resource allocation, which,
in the case of a power grid, would be based on prioritizing
the upgrade of sensing infrastructure for critical locations.
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APPENDIX

A. Proof of Proposition 1

For the first inequality, notice that the inner minimization
of (16) can be written as

min
α∈R,h∈Rn

i→j
X

‖h‖∞

s. t. A>Mi→j
bdX,X

i→j
bd

h+A>Mi→j
bd×,X

i→j
bd

ξ = 0.

Since for any ξ, the vector ĥ(ξ) =
−A>+

Mi→j
bdX,X

i→j
bd

A>Mi→j
bd×,X

i→j
bd

ξ is a feasible point, and

max
ξ∈{−1,+1}n

i→j
×

‖ĥ(ξ)‖∞ = ρ(Mi→j
bd×),

we have proved the first inequality.
For the second inequality, for any given ξ, let ĥ be the

optimal solution of the inner minimization of (16) with the
property that ‖ĥ‖∞ ≤ αi→j . Then, the tuple (αSOCP

i→j =

αi→j ,ω = 0,h = ĥ) is a feasible solution for the inner
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minimization of (17). Therefore, for any given ξ, the optimal
solution of (16) is always included in the feasible set of the
inner optimization of (17), and we have αSOCP

i→j (x) ≤ αi→j .

B. Statement of Lemma 2
Lemma 2. If the gMI condition is satisfied, then
for any ĥMbi

∈ [−1, 1]|Mbi|, there exist ĥMsf∪Mbo

and {ν̂`, û`}`∈Lat∩bi∪Lbd∪Lsf
with the properties that

‖ĥMsf∪Mbo
‖∞ ≤ 1− γ and

A◦>Msf∪Mbo
ĥMsf∪Mbo

+A◦>Mbi
ĥMbi

+∑
`∈Lat∩bi∪Lbd∪Lsf

ν̂`c
◦
` +D

◦>
` û` = 0. (20)

First, we provide the following result, which simplifies the
proof of Lemma 2.

Lemma 3. The gMI αSOCP
i→j (x) coincides with the optimal

objective value of the following minimax program:

max
ξ̃∈[−1,+1]

n
i→j
×

min
α̃∈R,ν∈Rn

i→j
L ,h̃∈Rn

i→j
X

α̃ (21a)

s. t. A>Mi→j
bdX,X

i→j
bd

h̃+A>Mi→j
bd×,X

i→j
bd

ξ̃

+
∑

`∈Li→j
bd

ν`c` +D
>
` u` = 0 (21b)

ν` ≥ ‖u`‖2, ∀` ∈ Li→jbd (21c)

ν`c
>
` x+ u>` D`x = 0, ∀` ∈ Li→jbd (21d)

‖h̃‖∞ ≤ α̃ (21e)

Proof of Lemma 3. The equivalence between optimizing over
[−1,+1]n

i→j
× and {−1,+1}n

i→j
× is due to the convexity of

the feasibility region given x ∈ K and ξ̃. Since x satisfies the
primal feasibility, which can be expressed as in (6), a standard
result (c.f., [40, Lemma 15]) in analogy to linear programming
indicates that (21d) is equivalent to:

ν`D`x+ c>` xu` = 0, ∀` ∈ Li→jbd ,

which indicates that ν` = ω`c
>
` x and u` = −ω`D`x for

ω` ≥ 0 and ` ∈ Li→jbd . It can be verified that this also satisfies
the SOCs (21c). By the definition of T ` = c`c

>
` −D

>
` D`,

the equivalence to (17) is established.

Proof of Lemma 4. First, we show that a sufficient condition
for the existence of ĥMsf∪Mbo

=
[
ĥ>Msf

ĥ>Mbo

]>
such that

‖ĥMsf∪Mbo
‖∞ ≤ 1− γ and (20) are satisfied is that for any

ĥMbi
there exists an ĥMbo

and {ν̂`, û`}`∈Lat∩bi
such that

‖ĥMbo
‖∞ ≤ 1− γ and

A>Mbo,Xbd
ĥMbo

+A>Mbi,Xbd
ĥMbi

+
∑

`∈Lat∩bi

ν`c` +D
>
` u` = 0. (22)

This is immediate by simply choosing ĥMsf∪Mbo
=[

0> ĥ>Mbo

]>
and {ν̂` = 0, û` = 0}`∈Lbd∪Lsf

. In what
follows, we prove (22) by induction.

The induction rule is as follows: we start by arbitrarily
choosing one line {i, j} ∈ Lat∩bi to initialize L(1)

at∩bi, where

i ∈ Nat and j ∈ Nbi, and initialize the measurement set
M(1)

bo :=Mi→j
bdX,M(1)

bi :=Mi→j
bd× and the variable set X (1)

bd :=

X i→jbd . For each step k, we add a new line {f, t} ∈ Lat∩bi

to L(k)
at∩bi and the associated measurements and variables to

M(k)
bo , M(k)

bi and X (k)
bd , respectively. We also construct c(k)

`

and D(k)
` with entries and columns corresponding to X (k)

bd

for all ` ∈ L(k)
at∩bi, respectively. In each step, we check

whether there exist ĥM(k)
bo

and {ν̂(k)
` , û

(k)
` }`∈L(k)

at∩bi
such that

‖ĥM(k)
bo

‖∞ ≤ 1− γ and

A>M(k)
bo ,X

(k)
bd

ĥM(k)
bo

+A>M(k)
bi ,X

(k)
bd

ĥM(k)
bi

+
∑

`∈L(k)
at∩bi

ν̂
(k)
` c

(k)
` +D

(k)>
` û

(k)
` = 0. (23)

The base case for k = 1 follows directly from the condition
that αSOCP

i→j ≤ 1−γ. For any k ≥ 1, let {f, t} ∈ Lat∩bi denote
the line to be added and consider two possible cases:

1) the new line does not share any nodes with the lines that
have been already added; or

2) the new line shares the attacked node f with one (or
more) of the lines already added

For each case, there are also three events that may occur:
a) one or more of the nodes in N f→t

bo are connected to one
or more of the nodes in the inner boundaries of lines that
have already been added

b) one or more of the nodes in the outer boundary of the
lines that have already been added are connected to t

c) none of the above
To prove the claim, we need to consider all the combinations
between the two cases and the three events. Fortunately, they
can be reduced to two typical scenarios, where the proofs can
be directly applied. We consider these scenarios now.

The first typical scenario applies to combinations 1c and 2c,
where M(k)

bo =M(k−1)
bo ∪Mf→t

bdX, M(k)
bi =M(k−1)

bi ∪Mf→t
bd× ,

X (k)
bd = X (k−1)

bd ∪ X f→tbd , M(k−1)
bo ∩Mf→t

bdX = ∅, M(k−1)
bi ∩

Mf→t
bd× = ∅, and X (k−1)

bd ∩X f→tbd = ∅. Therefore, for any given

ĥM(k)
bi

=
[
ĥ>M(k−1)

bi

ξ̃>
]>

with ‖ξ̃‖∞ ≤ 1, we can always

find ĥM(k)
bo

=
[
ĥ>M(k−1)

bo

h̃>
]>

and {ν̂(k)
` , û

(k)
` }`∈L(k)

at∩bi
that

satisfy (22), where h̃ and {ν̂(k)
` , û

(k)
` }`∈L(k)

at∩bi
are given by

(21).
The second scenario applies to the remaining combinations.

Let Ñbo be the set of nodes in the outer boundary shared
by the new line in Bf→tbo and those of the lines that have
been added. Then, we have M(k)

bo = M(k−1)
bo ∪ Mf→t

bdX,
M(k)

bi = M(k−1)
bi ∪Mf→t

bd× , X (k)
bd = X (k−1)

bd ∪ X f→tbd , where
M(k−1)

bo ∩ Mf→t
bdX is the set of measurements that only

depend on nodal variables of Ñbo, M(k−1)
bi ∩ Mf→t

bd× = ∅,
and X (k−1)

bd ∩ X f→tbd is the set of nodal variables of
Ñbo. For any given ĥM(k)

bi

and ξ̃, we can always find

ĥM(k)
bo

and h̃, where ĥM(k)
bo

is given by (23) and ĥM(k)
bo

is given by (16). Let ĥM(k)
bo

be further divided into the
parts corresponding to the voltage magnitude measurements
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(if available) of nodes in Ñbo (i.e.
[
ĥM(k)

bo

]
Ñbo

) and the

rest (i.e.
[
ĥM(k)

bo

]
Ñ c

bo

); similarly, let ĥ be further divided

into
[
ĥ
]
Ñbo

and the rest
[
ĥ
]
Ñ c

bo

. Then, by setting ĥM(k+1)
bo

=[[
ĥM(k)

bo

]>
Ñ c

bo

1
deg(Ñbo)

◦
([
ĥM(k)

bo

]
Ñbo

+
[
ĥ
]
Ñbo

)> [
ĥ
]>
Ñ c

bo

]>
where deg(Ñbo) is the connectivity degree for each node in
Ñbo, and ◦ indicates the Hadamard (element-wise) product,

we can satisfy (23) for any given ĥM(k+1)
bi

=
[
ĥ>M(k)

bi

ξ̂>
]>

.

Moreover, by construction, we have ‖ĥM(k+1)
bo

‖∞ ≤ 1 − γ

for all k. This completes the induction proof.

C. Proof of Theorem 1

The following lemma indicates a connection between Hu-
ber’s loss and a mixed `1, `2 loss.

Lemma 4. Let x̂1 be the solution to (3) and let (x̂2, b̂2) be
the solution to the following problem:

min
b∈Rnm ,x∈Rnx

1
2nm
‖y −Ax− b‖22 + λ‖b‖1 (24a)

s.t. c>` x ≥ ‖D`x‖2 , ∀` ∈ L. (24b)

Then, we have x̂1 = x̂2, and the i-th component of b̂2 is
given by:

[b̂2]i = sign(yi − a>i x̂2)max
(
0,
∣∣yi − a>i x̂2

∣∣− λ) ,
where sign(y) denotes the sign of y.

Proof. Given a feasible x, the inner optimization can be
decomposed into a series of smaller optimization problems

min
bi

1
2nm

(yi − a>i x− bi)2 + λ|bi|, (25)

for i ∈ [nm], which has a closed-form solution

b∗i = sign(yi − a>i x)max
(
0,
∣∣yi − a>i x∣∣− λ) , (26)

Now, we substitute (26) into the outer minimization to see the
equivalence to minimization of a Huber’s loss. Furthermore,
for the solution x̂2, the optimal b of (24) is given by (26).

Due to the above connection, hereafter we will analyze
the equivalent problem (24). For an arbitrary set of attacked
measurements Mat, the corresponding boundary Mbd :=
Mbi∪Mbo and safe measurementsMsf , we design a primal-
dual witness (PDW) process as follows:

1) Set b̂Msf
= 0 and b̂Mbo

= 0;
2) Determine x̂ =

[
x̂>sf x̂>bd x̂>at

]>
and b̂ =[

0> 0> b̂>Mbi
b̂>Mat

]>
by solving the following program:

min
bMbi

,bMat ,x

1

2nm

∥∥∥∥∥∥∥∥

yMsf

yMbo

yMbi

yMat

−A
xsf

xbd

xat

−


0
0

bMbi

bMat


∥∥∥∥∥∥∥∥

2

2

+λ

∥∥∥∥[bMbi

bMat

]∥∥∥∥
1

, (27a)

s.t. c>` x ≥ ‖D`x‖2 , ∀` ∈ L, (27b)

and ĥMbi
∈ ∂‖b̂Mbi

‖1 and ĥMat
∈ ∂‖b̂Mat

‖1 satisfying the
optimality conditions

− 1

nm
(yMat

−AMat,Xat
x̂at−b̂Mat

)+λĥMat
= 0, (28a)

− 1

nm

(
yMbi

−AMbi,Xbd
x̂bd −AMbi,Xat x̂at

− b̂Mbi

)
+ λĥMbi

= 0. (28b)

3) Solve (ĥMsf
, ĥMbo

) via the zero-subgradient equation:

− 1

nm

(
y −Ax̂− b̂

)
+ λĥ = 0, (29)

where x̂ =
[
x̂>Bsf

x̂>Bbd
x̂>Bat

]>
and b̂ =[

0> 0> b̂>Mbi
b̂>Mat

]>
are the solutions obtained

in (27), and ĥ =
[
ĥ>Msf

ĥ>Mbo
ĥ>Mbi

ĥ>Mat

]>
where

(ĥMbi
, ĥMat

) are given in (28). We check whether strict
feasibility conditions ‖ĥMsf

‖∞ < 1 and ‖ĥMbo
‖∞ < 1 hold.

The next lemma relates the PDW procedure to the solution
properties of (24).

Lemma 5. If the PDW procedure succeeds, then (x̂, b̂) that is
optimal for (27) is also optimal for (24). Furthermore, for any
optimal solution (x̃, b̃), it holds that supp(b̃) ⊆Mbi ∪Mat.

Proof. It can be checked that if PDW succeeds, then the
optimality conditions of (24) corresponding to (x̂, b̂) are
satisfied, which certify the optimality.

The subgradient ĥ satisfies ‖ĥMsf
‖∞ < 1, ‖ĥMbo

‖∞ < 1

and
〈
ĥ, b̂

〉
= ‖b̂‖1. Now, let (x̃, b̃) be any other optimal, and

let F (x, b) = 1
2nm
‖y −Ax− b‖22; then,

F (x̂, b̂) + λ
〈
ĥ, b̂

〉
= F (x̃, b̃) + λ‖b̃‖1,

and hence,

F (x̂, b̂) + λ
〈
ĥ, b̂− b̃

〉
= F (x̃, b̃) + λ

(
‖b̃‖1 −

〈
ĥ, b̃

〉)
.

By the stationarity condition of KKT, we have λĥ =
−∇bF (x̂, b̂) = 1

nm
(y −Ax̂− b̂), which implies that

F (x̂, b̂)−
〈
∇bF (x̂, b̂), b̂− b̃

〉
− F (x̃, b̃)

= λ
(
‖b̃‖1 −

〈
ĥ, b̃

〉)
≤ 0

due to convexity. We thus have ‖b̃‖1 ≤
〈
ĥ, b̃

〉
. Since by

Holder’s inequality, we also have
〈
ĥ, b̃

〉
≤ ‖ĥ‖∞‖b̃‖1, and

‖ĥ‖∞ ≤ 1, it holds that ‖b̃‖1 =
〈
ĥ, b̃

〉
. Since by the success

of PDW, ‖ĥMsf
‖∞ < 1, ‖ĥMbo

‖∞ < 1, we have b̃j = 0 for
j ∈Msf ∪Mbo.

In the following, we denote x◦ as the subvector of x that
removes the entries corresponding to xat, w◦ as the subvector
of w that removes entries corresponding to Mat, and I◦ as
the identity matrix of size nm − |Mat|.
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Proof of Theorem 1

Part 1): By the construction of PDW, we have b̂Msf
=

b\Msf
= 0 and b̂Mbo

= b\Mbo
= 0. The optimal solution x̂at

and b̂Mat
of (27) can take any value as long as the nonbinding

SOC constraint condition is satisfied. Thus, for any given x̂at

and b̂Mat , we can fix xat and bMat in (27) and solve the
following smaller program:

min
bMbi

,xsf ,xbd

1

2nm

∥∥∥∥∥
yMsf

yMbo

zMbi


︸ ︷︷ ︸

z◦

−A◦
[
xsf

xbd

]
︸ ︷︷ ︸
x◦

−

 0
0

bMbi

∥∥∥∥∥
2

2

+ λ ‖bMbi
‖1 , (30a)

s. t. c>` x ≥ ‖D`x‖2 , ∀` ∈ L \ Lat, (30b)

where zMbi
= yMbi

−AMbi,Xat
x̂at = AMbi,Xbd

x\bd+b̃Mbi

and b̃Mbi
= AMbi,Xat(x\at − x̂at). Thus, we have z◦ =

A◦x◦\ + w
◦
\ + I

◦>
Mbi

b̃Mbi
. The solution (x̂sf , x̂bd, b̂Mbi

) of
(30) is unique due to the lower eigenvalue condition. By the
KKT condition, (28) is satisfied. We combine (28) and (29)
and partition the relation into equations indexed by Mbi:

ĥMbi
=

1

nmλ
I◦Mbi

([
A◦ I◦>Mbi

] [ x◦\ − x̂◦

b̃Mbi
− b̂Mbi

]
+w◦\

)
,

(31)
as well as those indexed byMsf ∪Mbo, which can be solved
for ĥMsf∪Mbo

=
[
ĥ>Msf

ĥ>Mbo

]>
:

ĥMsf∪Mbo
=

1

nmλ
I◦Msf∪Mbo

(
A◦(x◦\ − x̂◦) +w◦\

)
. (32)

Since x̂◦ is the optimal solution of (30), it satisfies the
optimality condition:

1

nm
A◦>

([
A◦ I◦>Mbi

] [ x◦\ − x̂◦

b̃Mbi
− b̂Mbi

]
+w◦\

)
+

∑
`∈Lat∩bi∪Lbd∪Lsf

ν̂`c
◦
` +D

◦>
` û` = 0 (33)

Combining (31), (32) and (33) and after some elementary
operations, it yields that

λA◦>Msf∪Mbo
ĥMsf∪Mbo

+ λA◦>Mbi
ĥMbi

+
∑

`∈Lat∩bi∪Lbd∪Lsf

ν̂`c
◦
` +D

◦>
` û` = 0. (34)

By Lemma 2, for any ĥMbi
∈ ∂‖b̂Mbi

‖1, there al-
ways exist ĥMsf∪Mbo

and {ν̂`, û`}Lat∩bi∪Lbd∪Lsf
such that

‖ĥMsf∪Mbo
‖∞ < 1. Thus, the strict feasibility condition of

PDW is satisfied deterministically. Since PDW is successful,
we can conclude the first part based on Lemma 5.

Part 2): Let Q◦Mbi
=

[
A◦ I◦>Mbi

]
and ĥ◦ =[

ĥ>Msf∪Mbo
ĥ>Mbi

]>
. By the lower eigenvalue condition, we

can solve (31), (33) and (34):

∆ :=

[
x◦\ − x̂◦

b̃Mbi
− b̂Mbi

]
= −Q◦+Mbi

w◦\ + nmλ(Q
◦>
Mbi

Q◦Mbi
)−1

[
A◦>ĥ◦

ĥMbi

]

= −Q◦+Mbi
w◦\ + nmλ(Q

◦>
Mbi

Q◦Mbi
)−1Q◦>Mbi

ĥ, (35)

Then, we can bound the estimation error ∆ in (35). First, we
bound the infinity norm of b̃Mbi

− b̂Mbi
= Ib∆. By triangle

inequality,

‖Ib∆‖∞ ≤ ‖IbQ◦+w◦\‖∞ + nmλ‖IbQ◦+‖∞. (36)

Since the second term is deterministic, we will now bound
the first term. By the normalized measurement condition and
the lower eigenvalue condition, each entry of Q◦+w◦\ is zero-
mean sub-Gaussian with parameter at most

σ2‖(Q◦>Mbi
Q◦Mbi

)−1‖2 ≤
σ2

Cmin
. (37)

Thus, by the union bound, we have

P
(
‖IbQ◦+w◦\‖∞ > t

)
≤ 2 exp

(
−Cmint

2

2σ2
+ log |Mbi|

)
.

(38)
Then, set t = nmλ

2
√
Cmin

, and note that by our choice of λ, we

have Cmint
2

2σ2 > log |Mbi|. Thus, we conclude that

‖b̃Mbi
− b̂Mbi

‖∞

≤ nmλ
(

1

2
√
Cmin

+ ‖Ib(Q◦>Mbi
Q◦Mbi

)−1I>b ‖∞
)

with probability greater than 1− 2 exp(−c2n2
mλ

2). This indi-
cates that all bad data entries greater than

g(λ) = nmλ

(
1

2
√
Cmin

+ ‖Ib(Q◦>Mbi
Q◦Mbi

)−1I>b ‖∞
)

(39)

will be detected by b̂Mbi
.

Part 3): From (35), we can upper bound the `2 norm of the
signal error x◦\ − x̂◦ = Ix∆ by

‖IxQ◦+w◦\‖2 + nmλ‖Ix(Q◦>Mbi
Q◦Mbi

)−1I>b ‖∞,2.

For the first term, by the application of standard sub-gaussian
concentration,

P
(
‖IxQ◦+w◦\‖2 > ‖IxQ

◦+‖F + t‖IxQ◦+‖2
)
,

is upper bounded by exp
(
− c1t

2

σ4

)
. First, we see that

both ‖IxQ◦+‖F and ‖IxQ◦+‖2 are bounded by

‖Ix‖2‖(Q◦>Mbi
Q◦Mbi

)−1‖2‖Q◦>Mbi
‖F ≤

√
|Xsf |+|Xbd|+|Mbi|

Cmin

due to the lower eigenvalue condition and the normalized
measurement condition. Moreover, the probability

P

(
‖Ix(Q◦>Mbi

w◦\‖2 > t

√
|Xsf |+ |Xbd|+ |Mbi|

Cmin

)

is upper bounded by exp
(
− c1t

2

σ4

)
for any positive t. Together,

we conclude the proof.
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