Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure

Somayeh Sojoudi

Electrical Engineering and Computer Sciences University of California, Berkeley

Javad Lavaei

Industrial Engineering and Operations Research University of California, Berkeley

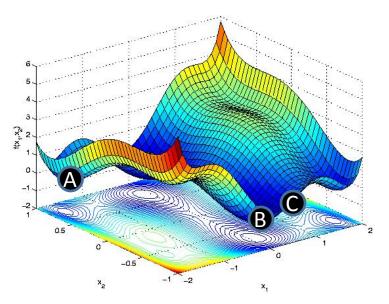
Polynomial Optimization

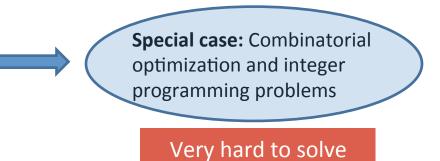
D Polynomial Optimization:

min
$$x^T M x$$

s.t. $x_i^2 = 1, \quad i = 1, 2, ..., n$

Different types of solutions:





Point A: Local solution

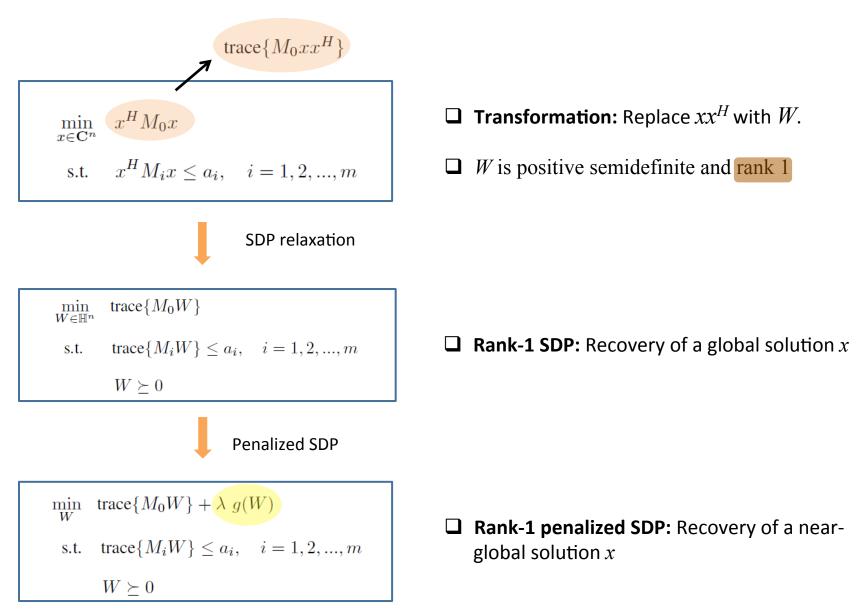
Point B: Global solution

Point C: Near-global solution

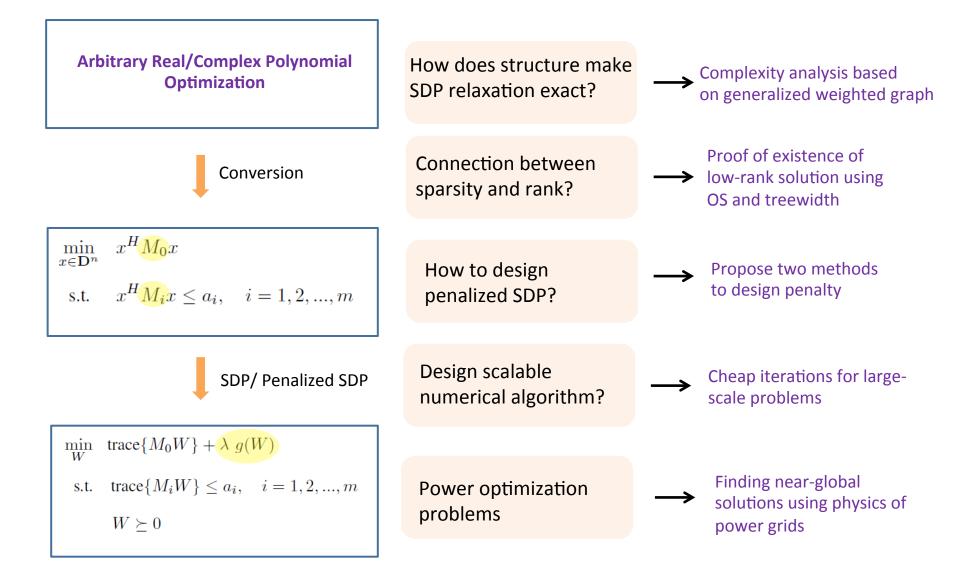
Focus of our research

* Approach: Low-rank optimization, matrix completion, graph theory, convexification

Convexification

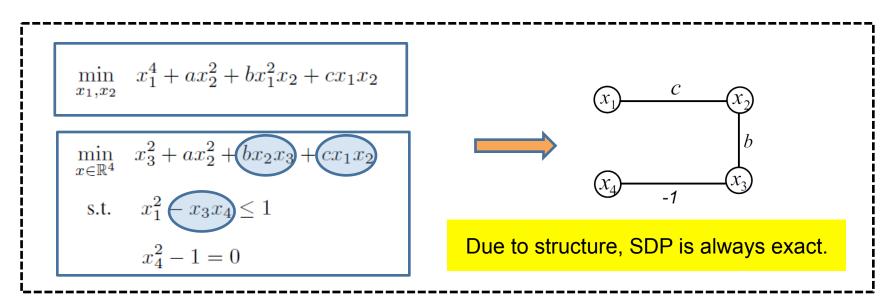


Research Problems



Structured Optimization

Approach: Map the structure into a *generalized weighted graph*.

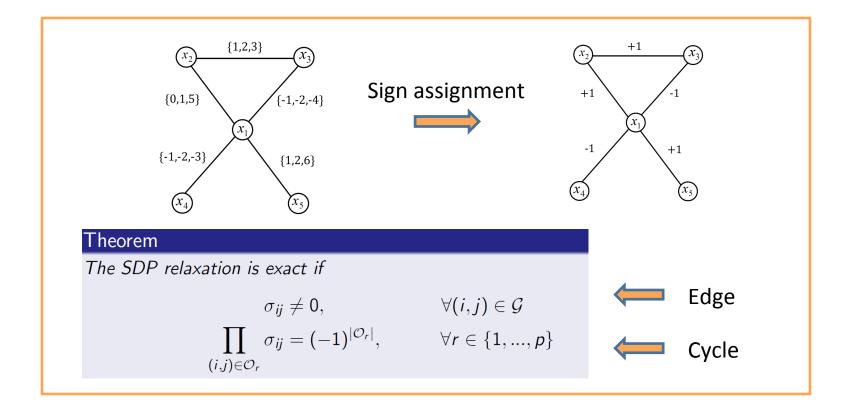


Generalized weighted graph:

$$\min_{x_1,x_2} \quad x_1^4 + a_0 x_2^2 + b_0 x_1^2 x_2 + c_0 x_1 x_2
s.t. \quad x_1^4 + a_i x_2^2 + b_i x_1^2 x_2 + c_i x_1 x_2 \le \alpha_i, \quad i = 1, 2, ..., m$$

$$\begin{array}{c} x_{1} & \{c_{0}, \dots, c_{m}\} \\ \hline \\ x_{1} & x_{2} \\ \hline \\ \\ x_{4} & -1 \end{array} \\ \begin{array}{c} x_{2} \\ x_{3} \end{array} \\ \begin{array}{c} x_{3} \\ x_{3} \end{array} \\ \begin{array}{c} x_{4} \\ x_{3} \end{array} \\ \begin{array}{c} x_{3} \\ x_{3} \end{array} \\ \begin{array}{c} x_{4} \\ x_{3} \end{array} \\ \begin{array}{c} x_{4} \\ x_{3} \end{array} \\ \begin{array}{c} x_{3} \\ x_{3} \end{array} \\ \begin{array}{c} x_{4} \\ x_{5} \\ x_{5} \end{array} \\ \begin{array}{c} x_{5} x_{5} \\ x_{5} \end{array} \\ \end{array}$$

Real-Valued Optimization



□ Special cases:

- Positive optimization: Bipartite graph
- * Negative optimization: Arbitrary graph

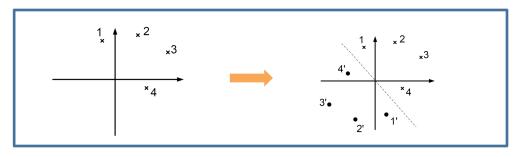
Interesting phenomena happen for complex optimization.

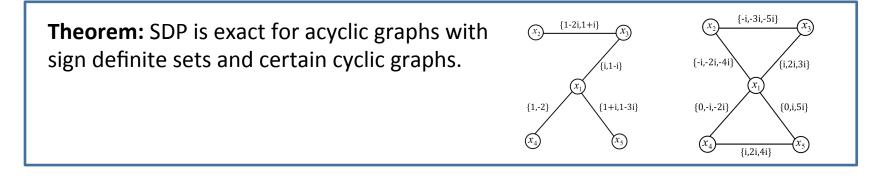
6

Complex-Valued Optimization

Real-valued case: "T " is sign definite if **T** and **–T** are separable in **R**:

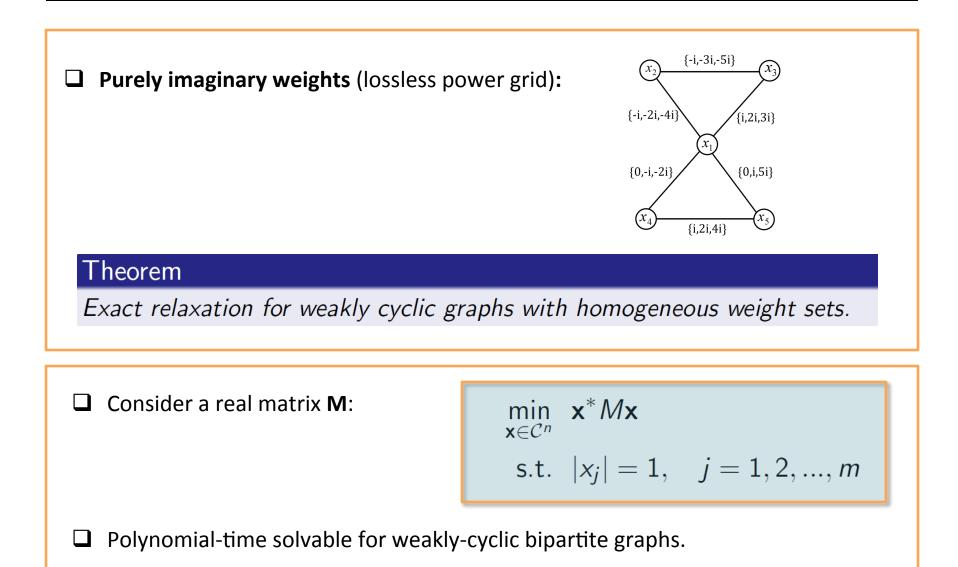
Complex-valued case: "T" is sign definite if **T** and **–T** are separable in **R**²:





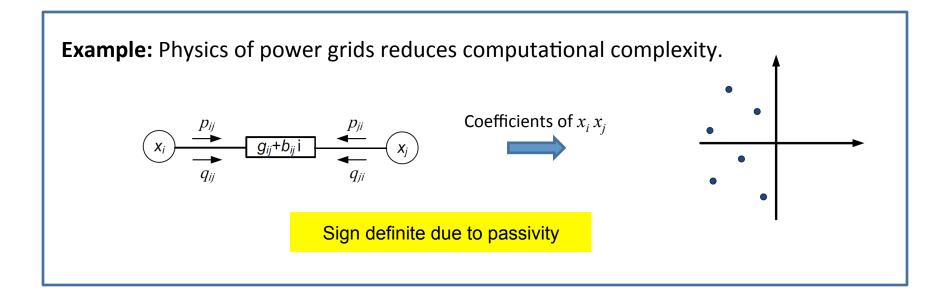
□ The proposed conditions include several existing ones ([Kim and Kojima, 2003], [Padberg, 1989], [Bose, Gayme, Chandy, and Low, 2012], etc.).

Complex-Valued Optimization



8

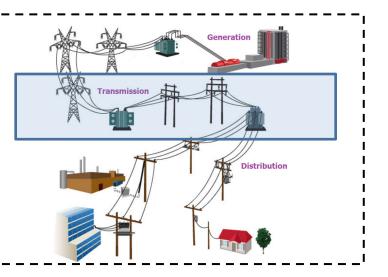
Example

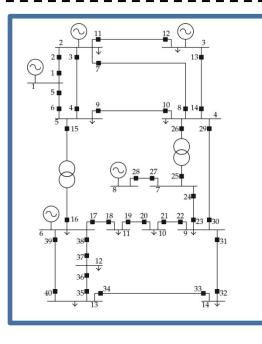


Power Systems

D Power system:

- A large-scale system consisting of generators, loads, lines, etc.
- Used for generating, transporting and distributing electricity.





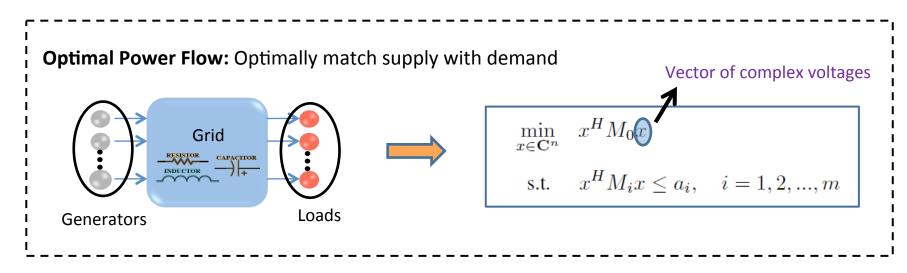
ISO, RTO, TSO

1. Optimal power flow (OPF)

- 2. Security-constrained OPF
- 3. State estimation
- 4. Network reconfiguration
- 5. Unit commitment
- 6. Dynamic energy management

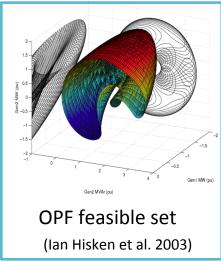
NP-hard (real-time operation and market)

Optimal Power Flow

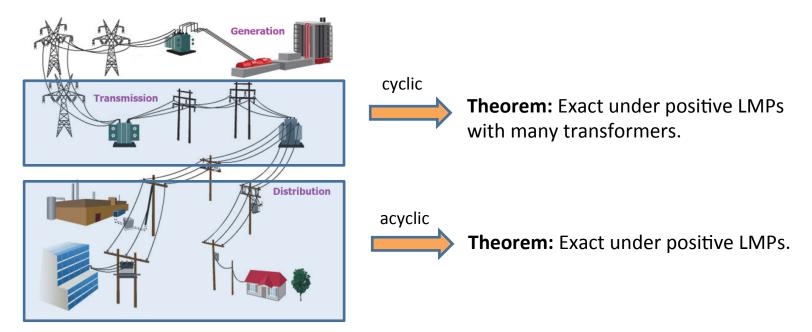


- **Real-time operation:** OPF is solved every 5-15 minutes.
- □ Market: Security-constrained unit-commitment OPF
- **Complexity:** Strongly NP-complete with long history since 1962.
- **Common practice:** Linearization
- **FERC and NETSS Study:** Annual cost of approximation > \$ 1 billion

A multi-billion critical system depends on optimization.



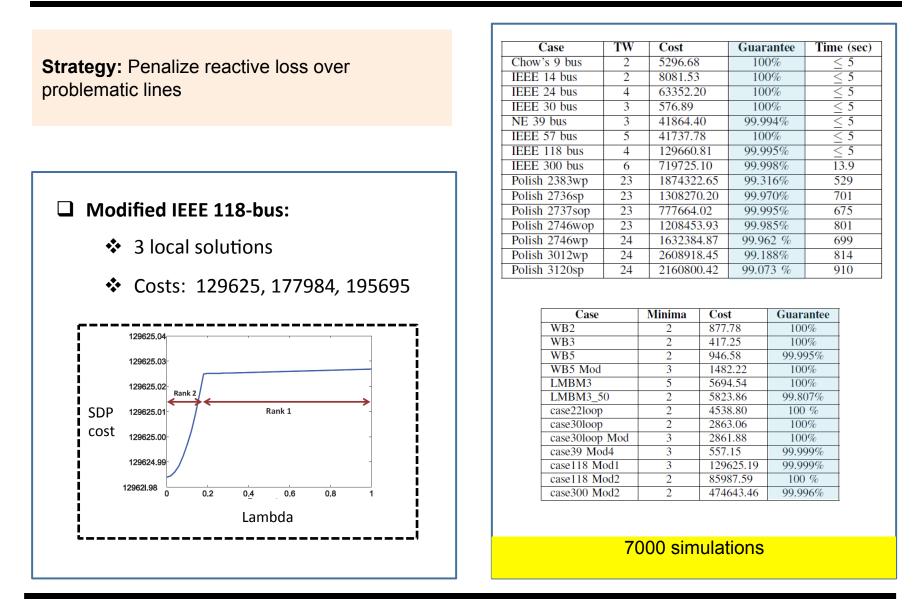
□ SDP is exact for IEEE benchmark examples and several real data sets.



Physics of power networks (e.g., passivity) reduces computational complexity for power optimization problems.

- 1. S. Sojoudi and J. Lavaei, "Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure," SIOPT, 2014.
- 2. S. Sojoudi and J. Lavaei, "Physics of Power Networks Makes Hard Optimization Problems Easy to Solve," PES 2012.
- 3. J. Lavaei and S. Low, "Zero Duality Gap in Optimal Power Flow Problem," IEEE Transactions on Power Systems, 2012.
- 4. J. Lavaei, D. Tse and B. Zhang, "Geometry of Power Flows and Optimization in Distribution Networks," IEEE Transactions on Power System, 2014.
- 5. R. Madani, S. Sojoudi and J. Lavaei, "Convex Relaxation for Optimal Power Flow Problem: Mesh Networks," IEEE Transactions on Power Systems, 2015.

Example: Near-Global Solutions



1. R. Madani, S. Sojoudi and J. Lavaei, "Convex Relaxation for Optimal Power Flow Problem: Mesh Networks," IEEE Transactions on Power Systems, 2015. 2. R. Madani, M. Ashraphijuo and J. Lavaei, "Promises of Conic Relaxation for Contingency-Constrained Optimal Power Flow Problem," Allerton 2014.

Funding Acknowledgements

ONR YIP: Graph-theoretic and low-rank optimization

DARPA YFA: Near-Global Solutions of Non-convex Problems

NSF CAREER: Control and optimization for power systems

NSF EPCN: Contingency analysis for power systems

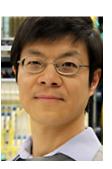
Google: Numerical algorithms for nonlinear optimization

Siebel: Computational methods for maximizing efficiency, reliability and resiliency of power systems

Collaborators

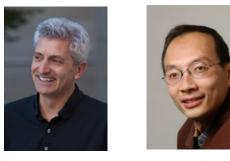
Caltech and UT Austin:

- John Doyle
- Richard Murray
- Steven Low
- Ross Baldick



Stanford and Washington:

- Stephen Boyd
- David Tse
- Baosen Zhang



Research Group:

- Ramtin Madani
- Abdulrahman Kalbat
- Salar Fattahi
- Morteza Ashraphijuo

