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Very	hard	to	solve		

Polynomial	Op5miza5on	

2	

q 	Polynomial	Op5miza5on:	

	
	
q 	Different	types	of	solu5ons:	

Special	case:	Combinatorial	
op1miza1on	and	integer	
programming	problems	

Very	hard	to	solve	

Point	A:	Local	solu1on		

Point	B:	Global	solu1on	

Point	C:	Near-global	solu1on	

Focus	of	our	research	

A	

B	
C	

v  Approach:	Low-rank	op1miza1on,	matrix	comple1on,	graph	theory,	convexifica1on	



SDP	relaxa1on	

Convexifica5on	
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Penalized	SDP	

q  Transforma5on:	Replace	xxH	with	W.	

q  W is positive semidefinite and rank 1 

q  Rank-1	SDP:	Recovery	of	a	global	solu1on	x 

q  Rank-1	penalized	SDP:	Recovery	of	a	near-
global	solu1on	x 



Arbitrary	Real/Complex	Polynomial	
Op5miza5on	

Conversion	

SDP/	Penalized	SDP	

Research	Problems	
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How	does	structure	make	
SDP	relaxa1on	exact?	

Connec1on	between	
sparsity	and	rank?	

How	to	design	
penalized	SDP?	

Complexity	analysis	based		
on	generalized	weighted	graph	

Proof	of	existence	of	
low-rank	solu1on	using	
OS	and	treewidth	

Propose	two	methods	
to	design	penalty	

Power	op1miza1on	
problems	

Finding	near-global	
solu1ons	using	physics	of	
power	grids	

Design	scalable	
numerical	algorithm?	

Cheap	itera1ons	for	large-
scale	problems	



	
q 	Approach:	Map	the	structure	into	a	generalized	weighted	graph.		

	

Due to structure, SDP is always exact. 

Structured	Op5miza5on	
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Generalized	weighted	graph:	



Edge	

Cycle	

q  	Special	cases:	
v  	Posi5ve	op5miza5on:	Bipar1te	graph	

v  	Nega5ve	op5miza5on:	Arbitrary	graph	

Sign	assignment	

Interesting phenomena happen for 
complex optimization. 

Real-Valued	Op5miza5on	

6	1.	S.	Sojoudi	and	J.	Lavaei,	"Exactness	of	Semidefinite	Relaxa1ons	for	Nonlinear	Op1miza1on	Problems	with	Underlying	Graph	Structure,"	SIOPT,	2014.	



q  Real-valued	case:	“T	“		is	sign	definite	if	T	and	–T	are	separable	in	R:	
q  Complex-valued	case:	“T	“		is	sign	definite	if	T	and	–T	are	separable	in	R2:	

Theorem:	SDP	is	exact	for	acyclic	graphs	with	
sign	definite	sets	and	certain	cyclic	graphs.		

Complex-Valued	Op5miza5on	

7	7	7	1	S.	Sojoudi	and	J.	Lavaei,	"Exactness	of	Semidefinite	Relaxa1ons	for	Nonlinear	Op1miza1on	Problems	with	Underlying	Graph	Structure,"	SIOPT	2014.	

q  The	proposed	condi1ons	include	several	exis1ng	ones	([Kim	and	Kojima,	2003],	
[Padberg,	1989],	[Bose,	Gayme,	Chandy,	and	Low,	2012],	etc.).	



Complex-Valued	Op5miza5on	
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q  	Purely	imaginary	weights	(lossless	power	grid):	

q  	Consider	a	real	matrix	M:	

q  	Polynomial-1me	solvable	for	weakly-cyclic	bipar1te	graphs.	



Example:	Physics	of	power	grids	reduces	computa1onal	complexity.		

Sign definite due to passivity 

Coefficients	of xi xj 	

Example	
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q 	Power	system:		

v  A	large-scale	system	consis1ng	of	generators,	
loads,	lines,	etc.		

v  Used	for	genera1ng,	transpor1ng	and	
distribu1ng	electricity.		

1.  Op1mal	power	flow	(OPF)	
2.  	Security-constrained	OPF	
3.  	State	es1ma1on	
4.  	Network	reconfigura1on	
5.  	Unit	commitment	
6.  	Dynamic	energy	management	

ISO,	RTO,	TSO	

NP-hard		
(real-1me	opera1on	and	market)	

Power	Systems	
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Op5mal	Power	Flow	
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A multi-billion critical system depends on optimization.  

Generators	 Loads	

Grid	

Op5mal	Power	Flow:	Op1mally	match	supply	with	demand	

q  Real-5me	opera5on:	OPF	is	solved	every	5-15	minutes.	

q  Market:	Security-constrained	unit-commitment	OPF	

q  Complexity:	Strongly	NP-complete	with	long	history	since	1962.	

q  Common	prac5ce:	Lineariza1on	

q  FERC	and	NETSS	Study:	Annual	cost	of	approxima1on	>	$	1	billion	

	

OPF	feasible	set	
	(Ian	Hisken	et	al.	2003)		

Vector	of	complex	voltages	



q  SDP	is	exact	for	IEEE	benchmark	examples	and	several	real	data	sets.	

Theorem:	Exact	under	posi1ve	LMPs.	
	

Theorem:	Exact	under	posi1ve	LMPs	
with	many	transformers.	
	

Physics of power networks (e.g., passivity) reduces computational complexity 
for power optimization problems. 

Exactness	of	Relaxa5on	
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acyclic	

cyclic	

1.  S.	Sojoudi	and	J.	Lavaei,	"Exactness	of	Semidefinite	Relaxa1ons	for	Nonlinear	Op1miza1on	Problems	with	Underlying	Graph	Structure,”	SIOPT,	2014.		
2.  S.	Sojoudi	and	J.	Lavaei,	"Physics	of	Power	Networks	Makes	Hard	Op1miza1on	Problems	Easy	to	Solve,"	PES	2012.	
3.  J.	Lavaei	and	S.	Low,	"Zero	Duality	Gap	in	Op1mal	Power	Flow	Problem,"	IEEE	Transac1ons	on	Power	Systems,	2012.	
4.  J.	Lavaei,	D.	Tse	and	B.	Zhang,	"Geometry	of	Power	Flows	and	Op1miza1on	in	Distribu1on	Networks,"	IEEE	Transac1ons	on	Power	System,	2014.	
5.  R.	Madani,	S.	Sojoudi	and	J.	Lavaei,	"Convex	Relaxa1on	for	Op1mal	Power	Flow	Problem:	Mesh	Networks,"	IEEE	Transac1ons	on	Power	Systems,	2015.		



 
Strategy: Penalize reactive loss over 
problematic lines  
                                                     

q  Modified	IEEE	118-bus:		

v  3	local	solu1ons	

v  Costs:		129625,	177984,	195695	

	

SDP	
cost	

Lambda	

                                                     

                                                     

7000 simulations  
 

Example:	Near-Global	Solu5ons	

13	
1.	R.	Madani,	S.	Sojoudi	and	J.	Lavaei,	"Convex	Relaxa1on	for	Op1mal	Power	Flow	Problem:	Mesh	Networks,"	IEEE	Transac1ons	on	Power	Systems,	2015.		
2.	R.	Madani,	M.	Ashraphijuo	and	J.	Lavaei,	“Promises	of	Conic	Relaxa1on	for	Con1ngency-Constrained	Op1mal	Power	Flow	Problem,”	Allerton	2014.	



q  ONR	YIP:	Graph-theore1c	and	low-rank	op1miza1on		
	

q  DARPA	YFA:	Near-Global	Solu1ons	of	Non-convex	Problems	
	
	
q  NSF	CAREER:	Control	and	op1miza1on	for	power	systems	
	

q  NSF	EPCN:	Con1ngency	analysis	for	power	systems	

	
q  Google:	Numerical	algorithms	for	nonlinear	op1miza1on	

q  Siebel:	Computa1onal	methods	for	maximizing	efficiency,	
reliability	and	resiliency	of	power	systems		

Funding	Acknowledgements	



Collaborators		

	
§  	John	Doyle		
§  	Richard	Murray	
§  	Steven	Low	
§  	Ross	Baldick	
	

	
§  Stephen	Boyd	
§  David	Tse	
§  Baosen	Zhang	
	

§  Ram1n	Madani	
§  Abdulrahman	Kalbat	
§  Salar	Fanahi	
§  Morteza	Ashraphijuo	

Caltech	and	UT	Aus5n:	

Stanford	and	Washington:	

Research	Group:	

15	


