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Polynomial Optimization

U Polynomial Optimization:

min X Mz

1

st. x2=1, i= 1,2,....n

U Different types of solutions:

Special case: Combinatorial
optimization and integer
programming problems

Very hard to solve

Point A: Local solution
Point B: Global solution

Point C: Near-global solution

Focus of our research

+* Approach: Low-rank optimization, matrix completion, graph theory, convexification



Convexification

et Mo H
trace{ Moxz" }

/
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min GHEMoz O Transformation: Replace xx/’ with W.
reCn

st. oMz <a;, i=1,2,...m O W is positive semidefinite and rank 1

SDP relaxation

min trace{ M W
W cHr (Mo}

s.t. trace{ M;W} < a;, i=1,2,....m  Rank-1 SDP: Recovery of a global solution x

W =0

Penalized SDP

11‘113_711 trace{ MoW} + A g(WW)
0 Rank-1 penalized SDP: Recovery of a near-
s.t. trace{M;W} <aq;, i=1,2,....m global solution x

W =0




Research Problems

Arbitrary ReaI/.Co.mpI.ex Polynomial How does structure make Complexity analysis based
Optimization SDP relaxation exact? on generalized weighted graph

Proof of existence of

Connection between , _
—> |ow-rank solution using

Conversion ) K2
SRarsitiandirant: OS and treewidth
min H Moz
zeD How to design 3 Propose two methods
st. Mz <a;, i=1,2,....m penalized SDP? to design penalty

Design scalable Cheap iterations for large-

SDP/ Penalized SDP _ _ —_
numerical algorithm? scale problems
nvltifn trace{ MoW} + A g(W)
s.t. trace{M;W} <a;, 1=1,2...m Power opﬁmizaﬁon Finding near-global
roblems > solutions using physics of
W =0 P power grids




Structured Optimization

O Approach: Map the structure into a generalized weighted graph.
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Generalized weighted graph:
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Real-Valued Optimization

{0,1,5} (1,2,-4) Sign assignment

The SDP relaxation is exact if

o5 # 0. W(i,j)€g &= Edge
H o = (-1, Vre{l, .., p} <:| Cycle

O Special cases:

7S o. ® ) . ) o . °
¢ Positive optimization: Bipartite graph Interesting phenomena happen for

& complex optimization.

** Negative optimization: Arbitrary graph

1. S. Sojoudi and J. Lavaei, "Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure," SIOPT, 2014. 6



Complex-Valued Optimization

O Real-valued case: “T “ is sign definite if T and —T are separable in R:

L Complex-valued case: “T “ is sign definite if T and —T are separable in R?:

Theorem: SDP is exact for acyclic graphs with
sign definite sets and certain cyclic graphs.

 The proposed conditions include several existing ones ([Kim and Kojima, 2003],
[Padberg, 1989], [Bose, Gayme, Chandy, and Low, 2012], etc.).

1S. Sojoudi and J. Lavaei, "Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure," SIOPT 2014. 7



Complex-Valued Optimization

O Purely imaginary weights (lossless power grid):

Exact relaxation for weakly cyclic graphs with homogeneous weight sets.

L Consider a real matrix M: min x*Mx
xXegn

S.t. ‘XH =1, y=12,....m

d Polynomial-time solvable for weakly-cyclic bipartite graphs.

1. S. Sojoudi and J. Lavaei, "Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure," SIOPT, 2014. 8



Example

Example: Physics of power grids reduces computational complexity.

Di Di Coefficients of x; x; o
(o == —(%) —>
qij qji ®

Sign definite due to passivity




Power Systems

Generation
N i

U Power system:

K/

% A large-scale system consisting of generators,
loads, lines, etc.

Distribution
7

% Used for generating, transporting and
distributing electricity.

»

ISO, RTO, TSO

—>
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NP-hard

(real-time operation and market)
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Optimal Power Flow

Optimal Power Flow: Optimally match supply with demand
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Generators Loads

L Real-time operation: OPF is solved every 5-15 minutes.

O Market: Security-constrained unit-commitment OPF

O Complexity: Strongly NP-complete with long history since 1962.
L Common practice: Linearization e /

3

O FERC and NETSS Study: Annual cost of approximation > S 1 billion
OPF feasible set

(lan Hisken et al. 2003)

Gent MW (pu)

A multi-billion critical system depends on optimization.
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Exactness of Relaxation

O SDP is exact for IEEE benchmark examples and several real data sets.

cyclic

|:> Theorem: Exact under positive LMPs

with many transformers.

Distribution

acyclic
Theorem: Exact under positive LMPs.

Physics of power networks (e.g., passivity) reduces computational complexity
for power optimization problems.

S. Sojoudi and J. Lavaei, "Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure,” SIOPT, 2014.
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Example: Near-Global Solutions

Case TW Cost Guarantee | Time (sec)
. 3 A how’s 9 bus 2 5296.68 100% <5
r : Penalize reactive | ver ¢ 2 |2 =
St ategy ) e sllze reslilve lobs e IEEE 14 bus 2 8081.53 100% <5
problematic lines TEEE 24 bus T [ 6335220 T00% <5
TEEE 30 bus 3 576.89 100% <5
NE 39 bus 3 41864.40 99.994% <5
TEEE 57 bus 3 41737.78 100% <5
IEEE 118 bus 1 129660.81 99.995% <5
TEEE 300 bus 6 719725.10 99.998% 3.9
Polish 2383wp 23 1874322.65 99.316% 529
. Polish 2736sp 23 1308270.20 | 99.970% 701
J Modified IEEE 118-bus: Polish 2737sop | 23 | 777664.02 | 99.995% 675
Polish 2746wop 23 1208453.93 | 99.985% 801
o . Polish 2746wp 24 1632384.87 | 99.962 % 699
0
+ 3 local solutions Polish 3012wp 24 | 2608918.45 99.188% 314
Polish 3120sp 24 | 2160800.42 | 99.073 % 910
J/
%* Costs: 129625, 177984, 195695
Case Minima Cost Guarantee
e WEB3 5 57778 T00%
! 12962504 1 WB3 2 41725 100%
I 120625.03 | : WBS 2 946.58 99.995%
1 i WB3 Mod 3 1482.22 100%
: 129625.02- / | I LMBM3 5 5694.54 100%
1 ;a"“ < > : LMBM3_50 2 5823.86 99.807%
1 SDP  129625.01f Rank 1 g case22loop 2 4538.80 100 %
1 t : case30loop 2 2863.06 100%
: COST 412062500} ] 1 case30loop Mod 3 2861.88 100%
I 1 case39 Mod4 3 557.15 99.999%
1 129624.99 1 : casel18 Mod1 3 129625.19 99.999%
' . . ‘ ‘ I case118 Mod2 2 85087.59 100 %
i 12962198 02 04 o8 08 1 1 case300 Mod2 2 47464346 | 99.996%
1
1
I Lambda !
1
1
S S S ——

7000 simulations

1. R. Madani, S. Sojoudi and J. Lavaei, "Convex Relaxation for Optimal Power Flow Problem: Mesh Networks," IEEE Transactions on Power Systems, 2015.
2. R. Madani, M. Ashraphijuo and J. Lavaei, “Promises of Conic Relaxation for Contingency-Constrained Optimal Power Flow Problem,” Allerton 2014.
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