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Software System 

 Decision making towards real-time operation 

 

 Slow time scale: Optimize the operating cost 

  

 

 Fast time scale:  Regulate the signals 

 
 

Centralized or distributed  
optimization 

Distributed control 
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 Approach: SDP relaxation, matrix completion, tree decomposition, low-rank optimization  



Optimization 

 Optimization:  
 Optimal power flow (OPF) 
 Security-constrained OPF 
 State estimation 
 Network reconfiguration 
 Unit commitment 
 Dynamic energy management 

 
 
 
 Issue of non-convexity: 

 Discrete parameters 
 Nonlinearity in continuous variables 

 
 

 Challenge: ~90% of decisions are made 
in day ahead and ~10% are updated 
iteratively during the day so a local 
solution remains throughout the day. 
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Production 

Cost 

local 

global 



Resource Allocation: Optimal Power Flow (OPF) 
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OPF: Given constant-power loads, find optimal P’s subject to: 
 Demand constraints 
 Constraints on V’s, P’s, and Q’s. 

Voltage V 

Complex power = VI*=P + Q i 

Current I 



Broad Interest in Optimal Power Flow 
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 OPF-based problems solved on different time scales: 
 Electricity market 
 Real-time operation 
 Security assessment 
 Transmission planning 

 

 Existing methods based on linearization or local search 

 

 Question: How to find the best solution using a scalable robust algorithm? 

 

 Huge literature since 1962 by power, OR and Econ people 
 

 
   



Penalized Semidefinite Programming (SDP) Relaxation 
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  Exactness of  SDP relaxation:  
 
 Existence of a rank-1 solution 

 
 Implies finding a global solution 

 
 



Optimal Power Flow 

Cost  

Operation 

Flow 

Balance  
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Old Project 1 
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 A sufficient condition to globally solve OPF: 

  Numerous randomly generated systems 
  IEEE systems with 14, 30, 57, 118, 300 buses 
  European grid 

 
 Various theories: It holds widely in practice  

   

Project 1:  How to solve a given OPF in polynomial time? (joint work with Steven Low) 

  



Old Project 2 
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 Transmission networks may need phase shifters: 

Project 2: Find network topologies over which optimization is easy? (joint work with Somayeh 

Sojoudi,  David Tse and Baosen Zhang) 

  
  

  Distribution networks are fine due to a sign definite property: 

PS 



Old Project 3 

Javad Lavaei, Columbia University 10 

Project 3: How to design a distributed algorithm for solving OPF? (joint work with Stephen Boyd, 

Eric Chu and Matt Kranning)  

 A practical (infinitely) parallelizable algorithm using ADMM. 

 

 It solves 10,000-bus OPF in 0.85 seconds on a single core machine.   



Graph-Theoretic SDP Relaxation  
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 Issues 1: What if we get a low-rank but not rank-1 solution? 
 

 Issue 2: How to deal with a computationally-expensive SDP? 
 

 Approach:  
 

1. Use a graph-theoretic approach to break down complexity 
 

2. This also tells what lines of the network cause non-convexity 
 

3. We first sparsify SDP and then penalize problematic lines 

 
 

 
 

 Example borrowed from Bukhsh et al.:  
 

1.  Modify IEEE 118-bus system with 3 local solutions: 129625.03, 177984.32 and 195695.54. 
 

2. Our method finds the best one. 



Treewidth 
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 Tree decomposition: 

 
 Treewidth of graph: The smallest width of all tree decompositions 
 

 
 Treewidth: 1 for a tree, 2 for IEEE 14-bus and 2-26 for IEEE and Polish systems 



Power Networks 
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 Result 1: Rank of W at optimality ≤ Treewidth +1 (valid for SC-UC-OPF) 
 

 Result 2: Rank of W at optimality ≤ maximum rank of bags (valid for SC-UC-OPF) 
 

 Result 3: Lines of network in high-rank bags are the source of nonzero duality gap  
 
 
 

  

       submatrices of W induced by bags of tree = positive semidefinite   

 W = positive semidefinite 

 Break down the complexity through sparsification: 

 Reduction of the number of parameters for a Polish system from ~9,000,00 to ~100K. 



Power Networks 
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 SDP: no penalty 

 

 Tier 1: uniform penalty 

 

 Tier 2: non-uniform penalty 

Total reactive loss 

Select loss 



Power Networks 
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 Several bad examples have been contrived by Buksh et al. 



Power Networks 
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 We have written a solver in MATLAB to find a near-global solution. 
 

 Computation time for Polish System with ~3100 buses: ~2.4 min in MOSEK (low 
precision). 

 
 



Distributed Control 
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 Computational challenges arising in the control of real-world systems: 
 Communication networks 
 Electrical power systems 
 Aerospace systems 
 Large-space flexible structures 
 Traffic systems 
 Wireless sensor networks 
 Various multi-agent systems 

Decentralized control Distributed control 



Optimal Distributed control (ODC) 
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  Stochastic ODC: Find a structured control                                for the system: 

 

      

     to minimize the cost functional: 

   

 

disturbance 

noise 

 Optimal centralized control: Easy (LQR, LQG, etc.) 

 Optimal distributed control (ODC): NP-hard (Witsenhausen’s example) 

 

 Rank of an expanded SDP relaxation of SODC =1, 2 or 3. 

 How to find a computationally-cheap relaxation? 
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First Stage of SDP Relaxation 

Lyapunov 

Direct and two-hop pattern 

Inversion of variables 

Exactness: Rank n 

Automatic penalty 

of the trace of W 
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Second Stage of SDP Relaxation 

 Direct Recovery Method: Recover the controller from the SDP solution. 
 

 Indirect Recovery Method: Recover the Lyapunov matrix from the SDP solution and 
pass it to a second SDP problem to design a controller. 
 

 Note: Trace of the to-be low-rank W is penalized in the objective by the noise 
covariance. 
 

 Implication: The higher the noise level, the better the rank enforcement. 
 

 Theorem: The relaxation is always exact in the centralized case (= Riccati equations)   
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IEEE 39 Bus (New England Power System) 

 Maximization of penetration of renewables: Adjust the mechanical power of each 
generator based on the angle and frequency of neighboring generators to 
minimize variations. 

New England System 



Four Communication Topologies 
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Near-Global Controllers 
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Various levels of controller gain Various levels of noise 



Low-Rank SDP Solution 

Javad Lavaei, Columbia University 24 

Real/complex  
optimization 

 Define G as the sparsity graph 
 

 Theorem: There exists a solution with rank at most treewidth of G +1 
 

 We propose infinitely many optimizations to find that solution. 
 

 This provides a deterministic upper bound for low-rank matrix completion problem. 



Polynomial Optimization 
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 Vertex Duplication Procedure: 
 

 
 Edge Elimination Procedure:  

 
 
 

 This gives rise to a sparse QCQP with a sparse graph. 
 

  The treewidth can be reduced to 2. 
 

Theorem: Every polynomial optimization has a QCQP formulation whose 
SDP relaxation has a solution with rank 1 or 2. 

 



Conclusions 

 

 Focus: Optimization and control 

 Goal: Design efficient algorithms 

 

 

 Two thrusts: 

 Global optimization 

 Distributed control 

 

 We have developed two solvers (available on my website). 
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