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‘software System

U Decision making towards real-time operation

< Slow time scale: Optimize the operating cost ‘ Centrallzet(-j or dtI_StrlbUted
optimization

O/

% Fast time scale: Regulate the signals ‘ Distributed control

U Approach: SDP relaxation, matrix completion, tree decomposition, low-rank optimization
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Optimization

U Optimization:
= Optimal power flow (OPF)
= Security-constrained OPF
= State estimation
= Network reconfiguration
= Unit commitment
= Dynamic energy management

U Issue of non-convexity:
= Discrete parameters
= Nonlinearity in continuous variables

O Challenge: ~90% of decisions are made
in day ahead and ~10% are updated
iteratively during the day so a local
solution remains throughout the day.
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Resource Allocation: Optimal Power Flow (OPF)

Voltage V

-~ o o = = -

OPF: Given constant-power loads, find optimal P’s subject to:
=" Demand constraints
= Constraints on V’s, P’s, and Q’s.
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Broad Interest in Optimal Power Flow

[ OPF-based problems solved on different time scales:

= Electricity market

= Real-time operation

= Security assessment

®= Transmission planning

O Existing methods based on linearization or local search

U Question: How to find the best solution using a scalable robust algorithm?

1 Huge literature since 1962 by power, OR and Econ people
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enalized semiaerinite Frogramming elaxation

[Quadratic optimization in v] - [Linear optimization in vv*]

l

Remove the rank constraint Replace vww* with a matrix W
and possibly penalize its effect _ subject to W > 0 and rank{W} =1

(] Exactness of SDP relaxation:

min v Mpv
veR?
st. viMiv<0, =12, ..t
min trace{ MoW
Wwesn { 0 }
s.t. trace{M;W} <0, i=1,..t

+» Existence of a rank-1 solution

s Implies finding a global solution

W =0
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W

min fi (P la — cost
V.Pc.Q¢ ; dPe.) &)
. Pm|n < P < Pmax ]_
Subject to I = G, = Iy (1b) Operation
Q" < Qg, < Q™ (1c) :
Vkmin < |Vk| < Vkmax (].d)
R {V(V—V )* *}<Pmax (1 ) ‘ Flow
e VitVi= Vi) Yimr = P €
trace{VV*Y"ere;} = Pg, — Pp, +(Qg, — @p, )i  (1f) m==) | Balance

Trick: Replace VV* with a matrix W = 0 subject to rank{W} = 1.
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OHPmmal

Project 1: How to solve a given OPF in polynomial time? (joint work with Steven Low)

Q A sufficient condition to globally solve OPF:

= Numerous randomly generated systems - R
= |EEE systems with 14, 30, 57, 118, 300 buses ‘ ‘
=  European grid T C C T

Q Various theories: It holds widely in practice
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Old Project 2

Project 2: Find network topologies over which optimization is easy? (joint work with Somayeh
Sojoudi, David Tse and Baosen Zhang)

 Distribution networks are fine due to a sign definite property:

(= —®
_’ ‘_

100 M}N @ @ 100 MW

0 Transmission networks may need phase shifters: Bus | Bus 2

SOCP:  WJ{i,j} =0, V(i,j) € L

10-20 MW
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OlProjects T

Project 3: How to design a distributed algorithm for solving OPF? (joint work with Stephen Boyd,
Eric Chu and Matt Kranning)

O A practical (infinitely) parallelizable algorithm using ADMM.

O It solves 10,000-bus OPF in 0.85 seconds on a single core machine.
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Graph-Theoretic SDP Relaxation

U Issues 1: What if we get a low-rank but not rank-1 solution?

U Issue 2: How to deal with a computationally-expensive SDP?

O Approach:
1. Use a graph-theoretic approach to break down complexity
2. This also tells what lines of the network cause non-convexity

3. We first sparsify SDP and then penalize problematic lines

U Example borrowed from Bukhsh et al.:

1. Modify IEEE 118-bus system with 3 local solutions: 129625.03, 177984.32 and 195695.54.

2. Our method finds the best one.
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Treewidth
U Tree decomposition: — %’ ‘%’ ‘8W ‘%
O @ 1© @

U Treewidth of graph: The smallest width of all tree decompositions

O Treewidth: 1 for a tree, 2 for IEEE 14-bus and 2-26 for IEEE and Polish systems

}gé I |.4'z'.9.’-_':. 7,8
12,4,5 i 4,5 O 5 6 O

______________________________
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Power Networks

U Break down the complexity through sparsification:

W = positive semidefinite

|

submatrices of W induced by bags of tree = positive semidefinite

O Reduction of the number of parameters for a Polish system from ~9,000,00 to ~100K.

O Result 1: Rank of W at optimality < Treewidth +1 (valid for SC-UC-OPF)

(O Result 2: Rank of W at optimality < maximum rank of bags (valid for SC-UC-OPF)

O Result 3: Lines of network in high-rank bags are the source of nonzero duality gap
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Power Networks

0 SDP: no penalty E fie(Pey) Total reactive loss

kEG /
Select loss
Q Tier 1: uniform penalty Z fu(Fas) Hew Z Qe, I
kcG =Y

Q Tier 2: non-uniform penalty Z Fe(Pey) + & Z Qe
kEG keg

Polish 2383wp | Unpenallzed objective ep = 3500, g = 3000

High rank bags 651

Problematic lines 751

Power balance violations 1338 88
Generator capacity violations 85 28
Line ratings violations 6 0

Cost 1861510.42 1874751.22 1874322.56

Tolerance = 108
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Power Networks

[ Several bad examples have been contrived by Buksh et al.

Test # local | # proh Eb e | Lower Upper Opt.

cases mins bags bound bound degree
WBE2 2 ] 0 0 87118 51178 100
WH3 2 0 0 0 | 417.25 J17.75 %100
WHS 2 3 0 | 500 | 946.53 046.58 299,905
WHS Mod 3 0 0 0 148222 148277 %100
LMBM3 5 0 0 0 | 5694.54 5604.54 %100
LMBM3_30 2 2 0 1 500 [ 5789.91 RERERT Te00 BT
case 2Zloop 2 ) 0 0 | 4538.80 4538.80 100
case J0loop 2 ] 0 0 286106 2863.06 100
case 30loop Mod 3 0 0 0 286l 88 286188 o, 100
case39 Modd 3 4 | 0 | 557.08 557.15 To 00, Ooh
case 118 Modl 3 36 10 0 129624.95 17067519 T099. 900
case 118 Mod2 2 42 1 0 BS987.27 85087.59 %100
case 300 Mod?2 2 107 05 | 50 | 4/4625.99 4464346 | %00 005
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Power Networks

Test a | TW | # prob. £b £l Lower Upper Opt. Com.

cases bags bound bound degree time
Chow's 9 bus 0 2 2 10 0 52096.68 5206.68 100 < 5
IEEE 14 bus ] 2 ] 0 1] alis]. 53 alR1.53 o 100 < 3
IEEE 24 bus 0 4 0 0 0 63352.20 6335220 100 < 5
[EEE 30 bus 0 |3 | 0.1 0 576.80 576.80 T 100 < 3
NE 39 bus 0 3 1 10 0 41586206 41864.40 90004 | <5
[EEE 37 bus 0 |3 0 1] 0 ESWETNE ESWETNES T 100 < 3
IEEE 118 bus 0 = 61 10 0 119653461 1966081 99,905 <3
[EEE 300 bus 0 |6 T 0.1 00 [ 71971163 | 71972500 | %099.998 | 139
Polish 2383wp 0 23 651 3500 | 3000 | 18615310042 | 18/437265 | %00316 | 529
Polish 27 336sp ] 23 1 1500 0 1307882.20 | 1308270.20 | %99.970 | 701
Polish 2/ 3 /sop ] 23 i 1000 0 Trialele Trieed. 02 Foa, 005 Y
Polish 2746wop ] 23 1 1000 0 1208273.91 | 1208453.93 | %99.985 201
Polish Z/dowp ] M4 1 1000 0 163177283 | 163238487 | %9992 | a99
Polish 3012wp 1 24 605 0 10000 | 2387740098 | 260891845 | %00 188 214
Polish 31.20sp 15 | 24 20 ] 10000 | 2140065.92 | 216080042 | 99073 o100

L We have written a solver in MATLAB to find a near-global solution.

1 Computation time for Polish System with ~3100 buses: ~2.4 min in MOSEK (low
precision).
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Distributed Control

O Computational challenges arising in the control of real-world systems:

X/

*%* Communication networks
+* Electrical power systems
+* Aerospace systems

R/

** Large-space flexible structures
s Traffic systems
** Wireless sensor networks

¢ Various multi-agent systems

>

SI SZ S3 Sl v S2 ‘ S3
u Wi U, b%) U, W3 U, Wi U, Y2 Us Y3
y y 1
| C CZ I C3 I C Cz | C3 |

Decentralized control Distributed control
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Optimal Distributed control (ODC)

L Optimal centralized control: Easy (LQR, LQG, etc.)

O Optimal distributed control (ODC): NP-hard (Witsenhausen’s example)

L Stochastic ODC: Find a structured control U[T] — Ky[']'] for the system:

x|t + 1] = Az[r] + Bulr mmm) disturbance
| i D

y[r] = Cz|7]

noise

to minimize the cost functional:

lim & (:ﬂ [T]TQI 7] + -u[T]TRu[T]) 4+ trace{KKT}

T—++00

L Rank of an expanded SDP relaxation of SODC =1, 2 or 3.

O How to find a computationally-cheap relaxation?

Javad Lavaei, Columbia University

18




!IrSt !tage O| !E! EEIHXE\tIOn

Computationally-Cheap SDP Relaxation of SODC: This

optimization problem is defined as the minimization of

Automatic penalty

trace{ PY 4+ MY, + 19 RWas +aWaa + KTRKS )} (30
{PEa Ha 33 3 G0 of the trace of W

subject to the constraints

G — j_{,]WQQ G (AG == BL)T 1
G Q! 0 0 - Lyapunov
—
AG+BL 0 G o | =% Gl
L 0 0 R
P I ”
> . .
I G] = 0, (31b) ‘ Inversion of variables
‘M  (BK)T
BK G ‘ = 0, (31c)
- ——
I, ,9'G, [ K[; ]
N __I____I___ 4 .
Wis | —ggriwypro | =0 Ol - Exactness: Rank n
[K O] L ' W |
K €K, 31 .
5 Gle) ‘ Direct and two-hop pattern
Way € K4, (31f)

with the parameter set {K,L, G, P, M, W}.
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Second Stage of SDP Relaxation

O Direct Recovery Method: Recover the controller from the SDP solution.

O Indirect Recovery Method: Recover the Lyapunov matrix from the SDP solution and
pass it to a second SDP problem to design a controller.

L Note: Trace of the to-be low-rank W is penalized in the objective by the noise
covariance.

O Implication: The higher the noise level, the better the rank enforcement.

0 Theorem: The relaxation is always exact in the centralized case (= Riccati equations)

Javad Lavaei, Columbia University
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IEEE 39 Bus (New England Power System)

J Maximization of penetration of renewables: Adjust the mechanical power of each
generator based on the angle and frequency of neighboring generators to

minimize variations.
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(d) Star Topology (G0 in center)
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Various levels of controller gain

Various levels of noise

(b] Mear-optimal cost for siochastic OO
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Low-Rank SDP Solution

trace{FoX}

trace{F;X} <0 for k=1,...,p

X11:1

X >0
Real/complex
optimization

[ Define G as the sparsity graph
0 Theorem: There exists a solution with rank at most treewidth of G +1
L We propose infinitely many optimizations to find that solution.

U This provides a deterministic upper bound for low-rank matrix completion problem.
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!o‘ynomla‘ !p!lmlzallon

polynomial optimization <= dense QCQP <= sparse QCQP

U Vertex Duplication Procedure:
X —— (X,.'l, X,'Q) S.t. Xj1 = X2
O Edge Elimination Procedure:

Xj + X Xj — Xj
XiXj <~ 212—222 st. z = 1,22: J

O This gives rise to a sparse QCQP with a sparse graph.

1 The treewidth can be reduced to 2.

Theorem: Every polynomial optimization has a QCQP formulation whose
SDP relaxation has a solution with rank 1 or 2.
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O Focus: Optimization and control

0 Goal: Design efficient algorithms

d Two thrusts:

/7

s Global optimization

/7

s Distributed control

0 We have developed two solvers (available on my website).
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