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Power Networks (CDC 10, Allerton 10, ACC 11, TPS 11, ACC 12, PGM 12) 
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 Optimizations:  
 Resource allocation 
 State estimation 
 Scheduling 

 
 
 
 Issue: Nonlinearities 

 
  

 
 

 Transition from traditional grid to smart grid: 
 More variables (10X) 
 Time constraints (100X) 

 
 



Resource Allocation: Optimal Power Flow (OPF) 
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OPF: Given constant-power loads, find optimal P’s subject to: 
 Demand constraints 
 Constraints on V’s, P’s, and Q’s. 

Voltage V 

Complex power = VI*=P + Q i 

Current I 



Summary of Results 
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 A sufficient condition to globally solve OPF: 

  Numerous randomly generated systems 
  IEEE systems with 14, 30, 57, 118, 300 buses 
  European grid 

 
 Various theories: It holds widely in practice  

 
 
 
 

 
 
 

 
   

Project 1:  How to solve a given OPF in polynomial time? (joint work with Steven Low) 

  

 Distribution networks are fine. 

 Every transmission network can be turned into a good one. 

Project 2: Find network topologies over which optimization is easy? (joint work with Somayeh 

Sojoudi,  David Tse and Baosen Zhang) 

  
  



Summary of Results 
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Project 3: How to design a parallel algorithm for solving OPF? (joint work with Stephen Boyd, Eric 

Chu and Matt Kranning)  

 A practical (infinitely) parallelizable algorithm 

 It solves 10,000-bus OPF in 0.85 seconds on a single core machine.   

Project 5: How to relate the polynomial-time solvability of an optimization to its 
structural properties? (joint work with Somayeh Sojoudi)  

Project 6: How to solve generalized network flow (CS problem)? (joint work with Somayeh 

Sojoudi)  

Project 4: How to do optimization for mesh networks? (joint work with Ramtin Madani)  



Convexification 
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 Flow: 

 Injection: 

 Polar: 

 Rectangular: 



Convexification in Polar Coordinates 
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 Imposed implicitly (thermal, stability, etc.) 

 Imposed explicitly in the algorithm 

Similar to the condition derived in Ross Baldick’s book 



Convexification in Polar Coordinates 
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 Idea:  Algorithm: 

 Fix magnitudes and optimize phases 

 Fix phases and optimize magnitudes 



Convexification in Polar Coordinates 
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 Can we jointly optimize phases and magnitudes? 

 Observation 1: Bounding |Vi| is the same as bounding Xi. 

 Observation 2:                                              is convex for a large enough m. 

 Observation 3:                                              is convex for a large enough m. 

 Observation 4: |Vi|
2 is convex for m ≤ 2. 

 

 

Change of variables: Assumption (implicit or explicit): 



Convexification in Polar Coordinates 
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Strategy 1: Choose m=2. 
 

Strategy 2: Choose m large enough 
 

 Pij, Qij, Pi and Qi become convex after the following approximation: 
 

Replace |Vi|
2 with its nominal value.  



Example 1 
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 Trick:  

SDP relaxation:  

 Guaranteed rank-1 solution! 



Example 1 
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Opt: 

 Sufficient condition for exactness: Sign definite sets. 

 What if the condition is not satisfied? Rank-2 W (but hidden) 

Complex case: 



Formal Definition: Optimization over Graph 
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        Optimization of interest: 

          (real or complex) 

 

 SDP relaxation for y and z (replace xx* with W) . 

 f (y , z) is increasing in z (no convexity assumption). 

 

 Generalized weighted graph:  weight set                             for edge (i,j).   

  Define: 

 



Highly Structured Optimization 
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Edge 

Cycle 



Convexification in Rectangular Coordinates 
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Cost  

Operation 

Flow 

Balance  

 Express the last constraint as an inequality. 



Convexification in Rectangular Coordinates 

 
 Partial results for AC lossless transmission networks. 
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Phase Shifters 
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PS 

18 

 Practical approach: Add phase shifters and then penalize their effects. 

 Stephen Boyd’s function for PF: 



Integrated OPF + Dynamics 
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 Swing equation: 

 Define: 

 Linear system: 

 Synchronous machine with interval voltage               and terminal voltage             . 



Sparse Solution to OPF  
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 Unit commitment: 

   1- 

   2- 

 Unit commitment: 

   1- 

   2- 

 Sparse solution to OPF: 

   1- 

   2- Sparse vector 

 Minimize: 



Lossy Networks 
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 Assumption (implicit or explicit): 

 Conjecture: This assumptions leads to convexification in rectangular coordinates. 

 Partial Result: Proof for optimization of reactive powers. 

 Relationship between  polar and rectangular? 



Lossless Networks 
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(P1,P2) (P12,P23,P31) Lossless 3 bus 

(P1,P2,P3) for a 

4-bus cyclic 

Network: 

Theorem: The injection region is 

never convex for n ≥ 5 if  

 

 Consider a lossless AC transmission network. 

 Current approach: Use polynomial Lagrange multiplier (SOS) to study the problem 



OPF With Equality Constraints 
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 Injection region under fixed voltage magnitudes: 

 

 

 

 

 

 

 When can we allow equality constraints? Need to study Pareto front 



Generalized Network Flow (GNF) 
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injections 

flows 

 Goal: 

limits 

Assumption:  
• fi(pi): convex and increasing 
• fij(pij): convex and decreasing 



Convexification of GNF 
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 Convexification: 

Feasible set without box constraint 
 

 It finds correct injection vector but not necessarily correct flow vector. 



Conclusions 
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 Motivation: OPF with a 50-year history 

 Goal: Find a good numerical algorithm 

 

 

 Convexification in polar coordinates 

 Convexification in rectangular coordinates 

 Exact relaxation in several cases 

 Some problems yet to be solved. 


