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On the Absence of Spurious Local Trajectories in
Time-varying Nonconvex Optimization

Salar Fattahi, Cedric Josz, Yuhao Ding, Reza Mohammadi, Javad Lavaei, and Somayeh Sojoudi

Abstract—In this paper, we study the landscape of an online
nonconvex optimization problem, for which the input data vary
over time and the solution is a trajectory rather than a single
point. To understand the complexity of finding a global solution of
this problem, we introduce the notion of spurious (i.e., non-global)
local trajectory as a generalization to the notion of spurious local
solution in nonconvex (time-invariant) optimization. We develop
an ordinary differential equation (ODE) associated with a time-
varying nonlinear dynamical system which, at limit, characterizes
the spurious local solutions of the time-varying optimization
problem. We prove that the absence of spurious local trajectory is
closely related to the transient behavior of the developed system.
In particular, we show that if the problem is time-varying, the
data variation may force all of the ODE trajectories initialized at
arbitrary local minima at the initial time to gradually converge
to the global solution trajectory. We study the Jacobian of the
dynamical system along a local minimum trajectory and show
how its eigenvalues are manipulated by the natural data variation
in the problem, which may consequently trigger escaping poor
local minima over time.

I. INTRODUCTION

Sequential decision making with time-varying data is at the
core of most of today’s problems. For example, the optimal
power flow (OPF) problem in the electrical grid should be
solved every 5 minutes in order to match the supply of elec-
tricity with a demand profile that changes over time [2]. Other
examples include the training of dynamic neural networks [3],
dynamic matrix recovery [4], [5], time-varying multi-armed
bandit problem [6], robot navigation and obstacle avoidance
[7], and many other applications [8]. Indeed, most of these
problems are large-scale and should be solved in real-time,
which strongly motivates the need for practical algorithms in
such optimization frameworks.

A recent line of work has shown that a surprisingly large
class of data-driven and nonconvex optimization problems—
including matrix completion/sensing, phase retrieval, and dic-
tionary learning, robust principal component analysis—has a
benign landscape, i.e., every local solution is also global [9]–
[12].1 A local solution that is not globally optimal is called
spurious. At the crux of the results on the absence of spurious
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1A local solution is a point that satisfies the first-order optimality
conditions. Moreover, a global solution is a point that has the best overall
objective value; see Sections III and V for more details.

local minima is the assumption on the static and time-invariant
nature of the optimization. Yet, in practice, many real-world
and data-driven problems are time-varying and require online
optimization. This observation naturally gives rise to the
following question:

Would simple local-search algorithms escape spurious local
minima in online nonconvex optimization, similar to their time-
invariant counterparts?

In this paper, we attempt to address this question by
developing a control-theoretic framework for analyzing the
landscape of online and time-varying optimization. In partic-
ular, we demonstrate that even if a time-varying optimization
may have undesired point-wise local minima at almost all
times, the variation of its landscape over time would enable
simple local-search algorithms to escape these spurious local
minima. Inspired by this observation, this paper provides a new
machinery to analyze the global landscape of online decision-
making problems by drawing tools from optimization and
control theory.

We consider a class of nonconvex and online optimization
problems where the input data vary over time. First, we
introduce the notion of spurious local trajectory as a gen-
eralization to the point-wise spurious local solutions. Roughly
speaking, a solution trajectory is called spurious if it does not
belong to the region of attraction of a global solution of the
problem (see Section III for a formal definition). We show
that a time-varying optimization can have point-wise spurious
local minima at every time step, and yet, it can be free of
spurious local trajectories. By building upon this notion, we
consider a general class of nonconvex optimization problems
and model their local trajectories via an ordinary differential
equation (ODE) representing a time-varying nonlinear dy-
namical system. We show that the absence of the spurious
local trajectories in this time-varying optimization is equiva-
lent to the convergence of all solutions in its corresponding
ODE. Based on this equivalence, we analyze different classes
of time-varying optimization problems and present sufficient
conditions under which, despite possibly having point-wise
spurious local minima at all times, the time-varying problem
is free of spurious local trajectories. This implies that the time-
varying nature of the problem is essential for the absence of
spurious local trajectories. Finally, we analyze the Jacobian of
the ODE along a local minimum trajectory and show how its
eigenvalues are manipulated by the data variation.

A. Related Works
Benign landscape: Nonconvexity is inherent to many prob-

lems in machine learning; from the classical compressive
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sensing and matrix completion/sensing [13]–[15] to the more
recent problems on the training of deep neural networks [16],
they often possess nonconvex landscapes. Reminiscent from
the classical complexity theory, this nonconvexity is perceived
to be the main contributor to the intractability of these prob-
lems. In many (albeit not all) cases, this intractability implies
that in the worst-case instances of the problem, spurious local
minima exist and there is no efficient algorithm capable of
escaping them. However, a lingering question remains unan-
swered: are these worst-case instances common in practice or
do they correspond to some pathological or rare cases?

Answering this question has been the subject of many
recent studies. In particular, it has been shown that nearly-
isotropic classes of problems in matrix completion/sensing
[9], [10], [17], robust principle component analysis [12], [18],
and dictionary recovery [19] have benign landscape, implying
that they are free of spurious local minima. It has also
been proven recently in [20] that under some conditions, the
stochastic gradient descent may escape the sharp local minima
in the landscape. At the core of the aforementioned results
is the assumption on the static and time-invariant nature of
the landscape. In contrast, many real-world problems should
be solved sequentially over time with time-varying input
data. For instance, in the optimal power flow problem, the
electricity consumption of the consumers changes hourly [21],
[22]. Therefore, it is natural to study the landscape of such
time-varying nonconvex optimization problems, by taking into
account their dynamic nature.

Time-varying dynamical systems: Recently, there has been
a growing interest in analyzing the performance of numerical
algorithms from a control-theoretical perspective [23]–[28].
Roughly speaking, the general idea behind these approaches
is to analyze the convergence of a specific algorithm by first
modeling its limiting behavior as a specific ODE that describes
the evolution of the algorithm, and then studying its stability
properties. As a natural extension, one would generalize this
approach to a general class of time-varying optimization by
modeling its KKT points as a general non-autonomous ODE
corresponding to a time-varying dynamical system. However,
the stability analysis of time-varying dynamical systems is
highly convoluted in the general nonlinear settings. We note
that several necessary and sufficient conditions for the stability
of linear time-varying systems were proposed in [29]. A
generalized time-varying Lyapunov function was proposed in
[30] and has been applied in [31] to study the stability of an
averaged system. Furthermore, slowly time-varying systems
are investigated in [32].

II. CASE STUDIES

In this section, we present empirical studies on the dynamic
landscapes of two problems in power systems and machine
learning: optimal power flow and dynamic matrix recovery.

A. Electrical Power Systems

In the optimal power flow problem, the goal is to match the
supply of electricity with a time-varying demand profile, while

satisfying the network, physical, and technological constraints.
In practice, the problem is solved sequentially over time with
the constraint that at every time-step, the solution cannot be
significantly different from the one obtained in the previous
time-step due to the so-called ramping constraints of the
generators. We consider the IEEE 9-bus system [33] and
initialize the system from the global solution, as well as three
different spurious local solutions. We then change the load
over time based on the California average load profile for the
month of January 2019 (Figure 1a). The optimal power flow
problem is then solved sequentially using local search every 15
minutes for the period of 24 hours, while taking into account
the temporal couplings between solutions via the ramping
constraints. The trajectories of the solutions for the optimal
power flow problem with different initial points appear in
Figure 1b. In this figure, the solid blue line represents the cost
obtained by the semidefinite programming (SDP) relaxation
of the optimal power flow [34]. This curve is a lower bound
to the globally optimal cost and serves as a certificate of the
global optimality whenever it touches other trajectories.

The gray circles in these plots are some of the local solutions
that were obtained via a Monte Carlo simulation. Based on
Figure 1b, indeed there exist multiple local solutions at almost
all time-step (some of them emerge over time). However,
surprisingly, the trajectories of the local solutions that are
initialized at different points all converge towards the global
solution. This implies that there is no spurious local trajectory,
and therefore local search methods are able to find global
minima of the optimal power flow problem at future times
even when they start from poor local minima at the initial
time.

B. Dynamic Matrix Recovery

In the dynamic matrix recovery problem, the goal is to
recover a time-varying low-rank matrix, based on a limited
number of linear observations [4], [5]. This problem can be
formulated as follows:

inf
X∈Rn×r

m∑
i=1

(
〈Ai, XX>〉 − di(t)

)2
(1)

where 〈·, ·〉 is the inner product operator, {Ai}mi=1 are the
sensing matrices, and d(t) is the time-varying measurements
vector. Equivalently, (1) can be re-written as

inf
X∈Rn×r,ε∈Rm

m∑
i=1

ε2i

s.t. 〈Ai, XX>〉 − εi = di(t) , i = 1, . . . ,m (2)

Assuming that d(t) does not change over time, it is well-
known that the above optimization problem has no spurious
local minima if the sensing matrices {Ai}mi=1 satisfy a certain
restricted isometry property (RIP). In particular, it is said that
the sensing matrices {Ai}mi=1 satisfy RIP with a constant δ ∈
[0, 1) if the inequality (1−δ)‖X‖2F ≤ 1

m

∑m
i=1〈Ai, X〉 ≤ (1+

δ)‖X‖2F is satisfied for every X ∈ Rn×n whose rank is upper
bounded by 2r (‖X‖F is the Frobenious norm of the matrix
X). Recently, [11] showed that if r = 1, an RIP constant
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(a) California average load profile for January 2019.
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(b) Solution trajectories of time-varying optimal power flow.

Fig. 1: Case study in power systems (data collected from http://www.caiso.com).

of δ < 1/2 is both necessary and sufficient for the benign
landscape of the time-invariant matrix recovery problem.

Consider the sensing matrices

A1 =

[
1 0
0 1

2

]
, A2 =

[
0
√

3
2√

3
2 0

]
(3)

A3 =

[
1 − 1√

2
1√
2

0

]
, A4 =

[
0 0

0
√

3
2

]
with the time-invariant measurement vector d =[
1 0 0 0

]>
and r = 1. The paper [11] proved that

the RIP constant for the above sensing matrices is equal to
1/2. This implies that the matrix recovery problem with the
aforementioned sensing matrices is prone to having spurious
local minima. In fact, [11] showed that the above problem has
one global solution at Z =

[
1 0

]>
and one spurious local

solution at X =
[
0, 1/
√

2
]>

. Now, consider the time-varying
version of the above instance, where the measurement vector
changes over time, as in:

d(t) =


(0.8 + 0.2 cos t)2 + 1

2 (0.2 sin t)2
√

3(0.2 sin t)(0.8 + 0.2 cos t)
0√

3
2 (0.2 sin t)2


It is easy to see that Z =

[
0.8 + 0.2 cos t 0.2 sin t

]>
is

the trajectory of the globally optimal solution to the defined
dynamic matrix recovery problem. Moreover, using a Gradient
descent algorithm initialized at the spurious local solution at
time t = 0, we solve (2) sequentially over time with an
appropriate regularization (to be defined later). Figures 2a
and 2b show that, despite the fact that the problem has a
spurious local minimum at t = 0 and future times, its local
trajectory gradually converges to the global one.

III. NOTION OF SPURIOUS LOCAL TRAJECTORY

Inspired by the above case studies, we consider the effect
of the variation in the input data on the landscape of the

optimization problem. We focus on the following time-varying
nonconvex optimization:

inf
x(t)∈Rn

f(x(t), t) s.t. hi(x(t)) = di(t), i = 1, . . . ,m (4)

where the objective function f(x(t), t) and the right-hand
side of the equality constraints vary over time t ∈ [0, T ].
We assume that f : Rn × [0, T ] −→ R is a continuously
differentiable function. Moreover, hi : Rn −→ R and
di : [0, T ] −→ R for i = 1, . . . ,m are twice continuously
differentiable functions, and that T > 0 is a finite time horizon.
Moreover, we assume that f is uniformly bounded from below
(i.e., f(x(t), t) ≥ M for some constant M ) and that the
problem is feasible for all t ∈ [0, T ]. The objective function
f(x, t) may be nonconvex in x and the constraint function
h(x) = (h1(x), . . . , hm(x)) may be nonlinear in x. Note that
the dynamic matrix recovery problem (2) is a special case
of (4).

Remark 1. Inequality constraints can also be included in (4)
through a reformulation technique. In particular, suppose
that (4) includes a set of inequality constraints gj(x) ≤ vj(t)
for j = 1, . . . , l. Then, one can reformulate them as equality
constraints through the following procedure:

1. Rewrite the inequality constraints by introducing a slack
variable s ∈ Rl, as in

gj(x(t)) + sj(t) = vj(t), j = 1, . . . , l

2. Augment the objective function with a penalty p(s(t)) =∑l
j=1 pj(sj(t)).

Here, pj(sj(t)) are nonsmooth loss functions for an exact
reformulation. Furthermore, they can be relaxed to contin-
uously differentiable loss functions at the expense of incurring
some (controllable) approximation errors; see [35], [36]. This
implies that the previously-introduced optimal power flow
problem can be reformulated as (4).

In practice, one can only hope to sequentially solve this
problem at discrete times 0 = t0 < t1 < t2 < . . . < tN = T .
However, notice that (4) is un-regularized. In particular, de-
pending on the properties of the objective function, an arbitrary

http://www.caiso.com
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(b) The objective value of the local trajectory over time

Fig. 2: Case study in matrix recovery.

solution to (4) at time tk can be arbitrarily far from that of (4)
at time tk−1. However—as elucidated in our case study on
the optimal power flow problem— it is neither practical nor
realistic to have solutions that change abruptly over time in
many real-world problems. One way to circumvent this issue
is to regularize the problem at time tk+1 by penalizing the
deviation of its solution from the one obtained at time tk.
Precisely, we employ a quadratic proximal regularization as is
done in online learning [37].

Definition 1. Given evenly spaced-out time steps 0 = t0 <
t1 < t2 < . . . < tN = T for some integer N , a sequence
x0, x1, x2, . . . , xN is said to be a discrete local trajectory of
the time-varying optimization (4) if the following holds:

1) x0 is a local solution to the time-varying optimization
(4) at time t0 = 0;

2) for k = 0, 1, 2, . . . , N − 1, xk+1 is local solution to the
regularized problem

infx∈Rn f(x, tk+1) + α ‖x−xk‖2
2(tk+1−tk)

s.t. hi(x) = di(tk+1) , i = 1, . . . ,m.
(5)

Above, α > 0 is a fixed regularization parameter and ‖ · ‖
denotes the Euclidian norm.

Note that in the above definition, the term local solution
refers to any feasible point that satisfies the Karush-Kuhn-
Tucker (KKT) conditions for (5). A natural approach to
characterizing the global landscape of (4) is to analyze discrete
local trajectories of the regularized problem (5). However,
notice that the non-convexity of (5) may lead to bifurca-
tions in discrete local trajectories. In particular, given a local
solution xk, the regularized problem (5) may possess two
local solutions x(1)

k+1 and x
(2)
k+1, each resulting in a different

discrete local trajectory.2 The non-uniqueness of the discrete

2For example, there exist two discrete trajectories starting at x0 = 0 and
at time t0 = 0 for the time-varying objective function f(x, t) := x2(T/2−t).
Indeed, the discrete trajectory stays at xk = 0 for tk ≤ T/2 and then, due
to the regularization, it bifurcates into two separate discrete trajectories.

local trajectories due to the bifurcation will make the analysis
inconclusive. This is because the next solution of the problem
given the current solution is not well-defined and due to the
number of possibilities at each step, the solution trajectory is
not unique and can take an exponential number of possibilities
depending on the settings of the numerical algorithm (the
choice of descent directions and step sizes). However, in
what follows, we show that such bifurcations disappear in the
ideal scenario, where the regularized problem can be sampled
arbitrarily fast, or equivalently, as we increase N to infinity.
In particular, given a fixed initial local solution x0, we show
that any discrete local trajectory starting from x0 converges
uniformly to the unique solution to a well-defined ODE that
is initialized at x0. By building upon this result, we introduce
the notion of spurious local trajectory as a generalization to
the notion of spurious local minima.

Given an initial local solution x0, consider the following
initial value problem:

ẋ = − 1

α
η(x, t) + θ(x)ḋ (6a)

x(0) = x0 (6b)

where

η(x, t) :=
[
I − J (x)>(J (x)J (x)>)−1J (x)

]
×∇xf(x, t), (7a)

θ(x) := J (x)>(J (x)J (x)>)−1. (7b)

Above, J (x) denotes the Jacobian of the left-hand side of
the constraints h(x) = [h1(x), . . . , hm(x)]> and d(t) de-
notes the right-hand side of the constraints, that is to say
d(t) = [d1(t), . . . , dm(t)]>. The term θ(x)ḋ captures the effect
of data variation in the dynamics, and the function η(x, t)
can be interpreted as the orthogonal projection of the gradient
∇xf(x, t) on the Kernel of J (x)>.

Later, we will show that the solution to (6) exists, it is
unique, and can be used to fully characterize the limiting
behavior of every discrete local trajectory of the time-varying
problem (4).
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Assumption 1 (Uniform Boundedness). There exist constants
R1 > 0 and R2 > 0 such that, for any discrete local trajectory
x0, x1, x2, . . ., the parameter ‖xk‖ and the objective function
of (5) at xk are upper bounded by R1 and R2, respectively,
for every k ∈ {0, 1, 2, . . . , N}.

Assumption 1 is a common assumption made in the op-
timization literature [38], [39], and can be guaranteed by
requiring the feasible region to be compact. This condition
can also be explicitly imposed via an inequality constraint
(such as box or norm constraint). According to Remark 1, such
inequality constraint can be moved to the objective function
via an (exact/inexact) penalty method. Moreover, the uniform
boundedness assumption on the variables is crucial from a
practical standpoint. For instance, in the time-varying OPF, the
variables, i.e., active and reactive power, voltage magnitudes,
and their angles, are restricted to bounded sets implied by
the laws of physics and technological constraints on physical
devices. It is worth noting that the main results of the paper
do not depend on the explicit values of the constants R1 and
R2.

Assumption 2 (Non-singularity). There exists a constant c >
0 such that, for any discrete local trajectory x0, x1, x2, . . ., it
holds that σmin(J (xk)) > c for all k ∈ {0, 1, 2, . . .}, where
σmin denotes the minimal singular value.

Assumption 2 implies that linear independence constraint
qualification (LICQ) holds at every point of a discrete local
trajectory, which in turn implies that the constraints are non-
degenerate. The LICQ is a simple sufficient condition to guar-
antee the well-definedness of the KKT points [40], and is the
most standard assumption in the optimization literature [36],
[41], [42]. Indeed, most of the off-the-shelf solvers, such as
IPOPT [43], only converge to solutions that automatically
satisfy LICQ.

Theorem 1 (Existence and Uniqueness). Let Assumption 1
and Assumption 2 hold. Suppose that x0 is an arbitrary local
solution to the time-varying optimization (4) at t = 0. Then,
the ODE (6) with the initial value condition x(0) = x0 has a
unique continuously differentiable solution x : [0, T ]→ Rn.

Theorem 1 states that the proposed ODE is well-defined and
has a unique solution, provided that its initial value is a local
solution, i.e., it satisfies the KKT conditions for the original
time-varying optimization problem. As will be shown later,
this assumption is crucial and cannot be relaxed in general.
Given the unique solution to the proposed ODE, the next
theorem precisely characterizes its relationship to any discrete
local trajectory of (5) starting at x0.

Theorem 2 (Uniform Convergence). Let Assumption 1 and
Assumption 2 hold. If x0 is a local solution to the time-varying
optimization (4) at t = 0, then any discrete local trajectory
initialized at x0 converges towards the solution x : [0, T ] →
Rn with x(0) = x0, in the sense that

lim
N→+∞

sup
0≤k≤N

‖xk − x(tk)‖ = 0, (8)

where N is the number of points in the discrete local trajec-
tories, and 0 = t0 < t1 < t2 < . . . < tN = T are evenly
spaced-out time-steps.

Sketch of the proofs. The proofs for Theorems 1 and 2
are quite involved and hence, they are deferred to the next
section. In what follows, we provide the high-level ideas
of our developed proof techniques. Note that most of the
classical results on ordinary differential equations, namely
the Picard-Lindelöf Theorem [44, Theorem 3.1], the Cauchy-
Peano Theorem [44, Theorem 1.2], and the Carathéodory
Theorem [44, Theorem 1.1], can only guarantee the existence
of a solution in a local region, i.e., a neighborhood [0, τ ]
where τ < T is potentially very small. On the other hand, the
global version of Picard-Lindelöf Theorem only holds under
a restrictive Lipschitz condition, which is not satisfied for (6).
Instead, we take a different approach to prove existence and
uniqueness of the solution to (6) (Theorem 1). The proof
consists of three general steps:

1) By building upon the Arzelà-Ascoli Theorem, we show
that, among all the discrete local trajectories that are
initialized at x0, there exists at least one that is uniformly
convergent to a continuously differentiable function y :
[0, T ]→ Rn.

2) By fully characterizing the KKT points of (5), we prove
that y is a solution to (6) when N → +∞.

3) The uniqueness of the solution is then proved by show-
ing the existence of an open and connected set D such
that the proposed ODE is locally Lipschitz continuous
on D and (y(t), t) ∈ D for every t ∈ [0, T ]. This,
together with [44, Theorem 2.2], completes the proof
of Theorem 1.

Given the existence and uniqueness of the solution to (6),
we show the correctness of Theorem 2 by making an extensive
use of the so-called backward Euler method [45]. In particular,
we show that all of the discrete local trajectories converge to a
discretized version of the solution to (6) that is obtained by the
backward Euler method. This, together with the existing con-
vergence results on the backward Euler iterations, completes
the proof of Theorem 2. �

Now that we have established the connection between
the discrete local trajectories and their continuous limit, we
naturally propose the following definition.

Definition 2. A continuously differentiable function x(t) :
[0, T ] −→ Rn is said to be a continuous local trajectory
of the time-varying optimization (4) if the following holds:

1) x(0) is a local solution to the time-varying optimization
(4) at time t = 0;

2) x(t) is a solution to (6).

The next definition will be at the core of our subsequent
definition of spurious local trajectories.

Definition 3. The region of attraction of a local minimum
x∗(t) of f(·, t) in the feasible set F(t) = {x ∈ Rn : h(x) =
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d(t)} at a given time t is defined as:{
x0 ∈ F(t)

∣∣ lim
s→∞

x̃(s) = x∗(t) where

dx̃(s)

ds
= − 1

α
η(x̃(s), t) + θ(x̃(s))ḋ(t) and x̃(0) = x0

}
Intuitively, the basin of attraction for a local solution x∗(t)

is defined as the set of initial points for which an alternative
(time-invariant) ODE has a solution whose limit corresponds
to x∗(t) (for fixed t). This alternative ODE is akin to the
classical Riemannian gradient flow, which is well-studied in
the literature with rigorous convergence results [46]–[48]. We
next introduce the central notion in this paper.

Definition 4. A continuous local trajectory x(t) is said to be
spurious if for all T̄ < T , there exists a time t ∈ [T̄ , T ] such
that x(t) does not belong to the region of attraction of a global
solution of f(·, t). Accordingly, the time-varying optimization
problem (4) is said to have no spurious local trajectories
if, when initialized at a local solution, any continuous local
trajectory x(t) belongs to the region of attraction of a global
solution of f(·, t) at all times t ∈ [T̄ , T ] for some constant
T̄ < T .

So far, we have taken the time horizon T to be finite.
However, the above definition naturally applies to problems
with an infinite time horizon T = +∞. In Theorem 3, we
will provide a sufficient condition under which the above
non-spurious trajectory property holds for a general objective
function with a damping sinusoidal time-varying perturbation.

It may be speculated that a spurious local trajectory could
have been simply defined as a trajectory that does not con-
verge towards a global solution. To understand why the latter
definition is not meaningful, notice that both discrete and
continuous local trajectories are defined with respect to the
regularized problem (5), as opposed to (4). The regularization
term acts as an inertia in the continuous local trajectory,
forcing it to “lag behind” the global solution when it changes
rapidly over time. Therefore, under this alternative definition,
all trajectories would be considered spurious. This would be
true even for the trajectory initialized at the global minimum.
See Figures 3a and 3b for an illustration of this phenomenon.

The notion introduced in Definition 4, while it deals with
continuous local trajectories, naturally has implications for
discrete local trajectories. With sufficiently small time steps,
the discrete trajectory will eventually converge to the region of
attraction of a global solution if the corresponding continuous
trajectory is not spurious.

IV. CONDITIONS FOR THE ABSENCE OF SPURIOUS LOCAL
TRAJECTORIES

In this section, we analyze the role of data variation on the
behavior of the solution trajectories. Observe that without data
variation, strict spurious local minima cannot not be escaped.
This is a consequence of classical results on the local stability
of time-invariant ODEs (see for instance [49, Corollary 10]).
In contrast, we show that data variation can enable escaping
spurious local solutions over time. In particular, we prove
that even a simple periodic variation in the data can induce

continuous local trajectories to escape non-global minima and
eventually track the global minima.

To better illustrate the main idea, we start with a class of
uni-dimensional time-varying problems, and provide sufficient
conditions for the absence of spurious local trajectories. Then,
we extend our results to a general class of multi-dimensional
problems. Consider the function

inf
x∈R

f(x, t) := g(x− β sin(t)) (9)

where g : R −→ R is continuously twice differentiable and
β > 0 models the variation of the data over time. Only the
right-hand side varies over time, and therefore, this problem
fits well in our introduced framework. We assume that g(·)
admits only three stationary points g′(y1) = g′(y2) = g′(y3)
with y1 < y2 < y3. We assume also that y1 and y3 are local
minima such that g(y1) > g(y3), while y2 is a local maximum.
Finally, we assume that g is coercive (its limit at ±∞ is +∞).
Thus, its global infimum is reached in y3.

The motivation behind studying this class of functions f(·)
is as follows. Since g(y) has a global minimum as well as a
spurious solution, when it is minimized by a gradient descent
algorithm initialized at the spurious solution, it will become
stuck there. This means that using gradient descent for such
function is inefficient. However, one can oscillate the function
to arrive at the time-varying function f(x, t) and then study
it in the context of online optimization. The following result
identifies sufficient conditions for the absence of spurious
local trajectories, which implies that if α and β are selected
appropriately, gradient descent will always find the global
solution.

Proposition 1. If α, β > 0 are such that
1) αβ > C := maxy16y6y3

g′(y),
2) ∃m1,m2 ∈ R : m1 < y1 < m2 and g′(m1) =

g′(m2) = −αβ,
3) −C/α(t2− t1)−β(sin(t2)−sin(t1))+m1 > m2 where

0 < t1 6 t2 satisfy cos(t1) = cos(t2) = −C/(αβ),
then the time-varying problem (9) has no spurious local
trajectories for all time horizon T ∈ [2π,+∞).

Proof. A continuous local trajectory x : [0, T ] −→ R satisfies

x(0) 6 y3, ẋ = − 1

α
∇xf(x, t), (10)

which, after the change of variable y := x− β sin(t), reads

y(0) 6 y3, ẏ = − 1

α
g′(y)− β cos(t). (11)

We first show by contradiction that there exists t ∈ [0, 2π] such
that y(t) > m2. Assume that y(t) < m2 for all t ∈ [0, 2π].
Then, for all t ∈ [0, 2π], it holds that

ẏ = − 1

α
g′(y)− β cos(t) > −C

α
− β cos(t). (12)

Thus, we have

y(t2) > −C
α

(t2 − t1)− β(sin(t2)− sin(t1)) + y(t1). (13)

We next show by contradiction that y(t1) > m1. Assume that
y(t1) < m1. Thus y(t1) < m1 < y1 6 y(0). Let t3 denote the
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(a) Graph of a time-varying optimization
infx∈R f(x, t) showing that the final state of
the trajectory belongs to the region of attrac-
tion of the global minimum.

(b) Graph of the same time-varying optimiza-
tion infx∈R f(x, t) from above showing that the
trajectory can never stay in a neighborhood of
the global minimum of arbitrarily small size.

Fig. 3: Example of a time-varying optimization.

maximal element of the compact set [0, t1]∩ y−1(m1), where
y−1(b) := {a ∈ R | y(a) = b}. Thus y(t) 6 y(t3) for all
t ∈ [t3, t1]. As a result, y′(t3) 6 0. Together with y′(t3) =
−1/αg′(m1) − β cos(t3) = β(1 − cos(t3)), this implies that
t3 = 0 or t3 = 2π. This is in contradiction with 0 < t3 <
t1 < π.

Now that we have proven that y(t1) > m1, equation (13)
implies that y(t2) > m2. This is a contradiction. Therefore
there exists t ∈ [0, 2π] such that y(t) > m2. Using the same
argument as in the previous paragraph, we obtain y(2π) > m2.
As a result, x(2π) = y(2π)−β sin(2π) > m2 as well. Finally,
using standard arguments in Lyapunov theory3, there exists
T̄ < T such that x(t) belongs to the region of attraction of y3

for all t ∈ [T̄ , T ].

We highlight the implications of the above proposition
through a numerical example.

Example 1. Consider the objective function f(x, t) := g(x−
β sin(t)) where

g(y) := 1/4y4 + 1/8y3 − 2y2 − 3/2y + 8. (14)

The time-varying objective f(x, t) has the following stationary
points: it admits a spurious local minimum at −2 + β sin(t),
a local maximum at −3/8 + β sin(t), and a global minimum
at 2 + β sin(t). The three sufficient conditions of Proposition
1 can be brought to bear on this example. They yield three
inequalities, as shown in Figure 4a, whose feasible region
is represented in Figure 4b. Taking a point in that feasible
region, we confirm numerically in Figure 4c that a trajectory
initialized at a local minimum of f(·, 0) winds up in the region
of attraction of the global solution to f(·, T ) at the final time
T = 2π. In contrast, taking a point outside the feasible region,
we observe in Figure 4d that a trajectory initialized at a local

3Details can be found in the first paragraph of page 24 of https://arxiv.
org/pdf/1905.09937v1.pdf.

minimum of f(·, 0) does not end up in the region of attraction
of the global solution to f(·, T ).4

We make a few remarks regarding Figure 4a. Note that k1

and k2 are integers in {0, 1, 2} such that k1 minimizes the
line it appears in, and k2 minimizes the line it appears in
while not being equal to k1. These numbers come from Viète’s
solution to a cubic equation [50]. Furthermore, the second
inequality corresponds to minus the discriminant of a fourth-
order polynomial.

Next, we will extend the aforementioned result to a general
class of multi-dimensional optimization problems. The goal is
to show that certain non-global local solutions of an arbitrary
time-invariant function g(x) that cannot be escaped using
deterministic local search methods can indeed be escaped
via the conversion of the problem to a time-varying function
f(x, t) for which there is no spurious trajectory. Consider the
time-varying optimization problem

inf
x∈Rn

f(x, t) := inf
x∈Rn

g(x− βe−λt sin(ωt)u) (15)

where g : Rn −→ R is continuously twice differentiable,
coercive (its limit as ‖y‖ → +∞ is +∞). The amplitude
β > 0 and the pulsation ω > 0 model the sinusoidal variation
of data over time with a damping factor of λ > 0. The variation
occurs along a direction u ∈ Rn of norm 1. Let {yi}i∈I denote
the set of spurious local minima of g(x). Moreover, let B(a, r)
(respectively S(a, r)) denote the Euclidian ball (respectively
sphere) in Rn centered at a and of radius r. Given a fixed
R > 0, we define the following constants

C1 := max
y∈

⋃
i∈I

B(yi,R)
‖∇g(y)‖,

C2 := min
d ∈ S(0, 1)

i ∈ I

〈∇g(yi −Rd), d〉. (16)

4In order to increase visibility, a maximal threshold is used on the
objective function f(x, t) in Figure 4c and Figure 4d (hence the flat parts).
For the same reason, a non-linear scaling is used. Precisely, (x, t) −→
f(x+ (β − 1) sin(t), t) and t −→ x(t)− (β − 1) sin(t) are represented in
the figures. This explains why x(t) appears to decrease for small 0 6 t 6 2π
in Figure 4c.

https://arxiv.org/pdf/1905.09937v1.pdf
https://arxiv.org/pdf/1905.09937v1.pdf
https://arxiv.org/pdf/1905.09937v1.pdf
https://arxiv.org/pdf/1905.09937v1.pdf
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These constants enable us to control fluctuations of g(x) in the
vicinity of its local minima. A small constant C1 corresponds
to spurious local minima that tend to be flat, while larges
values are associated with local minima that are sharper [51,
Metric 2.1]. For the sake of clarity, we assume that g(x) has
no saddle points and local maxima outside of ∪i∈IB(yi, R)
(for more on this, see Remark 2). Notice that C1 > C2 due
to the Cauchy-Schwarz inequality. Theorem 3 below shows
that if C1 is not too large, then one can escape spurious local
minima, and if C2 is not too small, then one will never return
to the vicinity of any spurious local minima after some time.

Theorem 3. If 2αω(βe−λπ/(2ω) − R)/π > C1

and αβe−λRα/(C1+αβω)
√
λ2 + ω2 < C2, then the time-

varying optimization (15) has no spurious trajectories.

Proof. First, we show that the spurious local minimum is
initially escaped. A continuous local trajectory x(t) satisfies

x(0) ∈ {yi}i∈I , x′(t) = − 1

α
∇xf(x(t), t), (17)

which, after the change of variables y(t) := x(t) −
βe−λt sin(ωt)u, reads

y′(t) = −∇g(y(t))/α− βe−λt[−λ sin(ωt) + ω cos(ωt)]u,

y(0) ∈ {yi}i∈I , (18)

We first show by contradiction that there exists some time
t ∈ [0, T ] such that ‖y(t) − y(0)‖ > R > 0. Assume that
‖y(t)− y(0)‖ 6 R for all t > 0. Then, for all t > 0, it holds
that

〈y′(t), u〉
= 〈−∇g(y(t))/α− βe−λt[−λ sin(ωt) + ω cos(ωt)]u, u〉
= −〈∇g(y(t)), u〉/α− βe−λt[−λ sin(ωt) + ω cos(ωt)]〈u, u〉
6 ‖∇g(y(t))‖/α− βe−λt[−λ sin(ωt) + ω cos(ωt)]

6 {C1 − αβe−λt[−λ sin(ωt) + ω cos(ωt)]}/α, (19)

from which we deduce that

〈y(t)− y(0), u〉 =

〈∫ t

0

y′(s)ds, u

〉
=

∫ t

0

〈y′(s), u〉ds

6 [C1t− αβe−λt sin(ωt)]/α. (20)

Our assumption that 2αω(βe−λπ/(2ω) − R)/π > C1 implies
that the upper bound in (20) is negative when t = π/(2ω).
Using the Cauchy-Schwarz inequality, we then obtain

‖y(π/(2ω))− y(0)‖ > |〈y(π/(2ω))− y(0), u〉|
> [αβe−λπ/(2ω) − C1π/(2ω)]/α > R.

This yields a contradiction. We conclude that there exists t1 >
0 such that ‖y(t1)− y(0)‖ > R. Observe that

‖y(t1)− y(0)‖ =

∥∥∥∥∫ t1

0

∇g(y(t))dt− βe−λt1 sin(ωt1)u

∥∥∥∥
=

∫ t1

0

‖∇g(y(t))dt‖+ βe−λt1 sin(ωt1)

6 C1t1/α+ βe−λt1 sin(ωt1)

6 (C1/α+ βω)t1. (21)

As a result, t1 > Rα/(C1 + αβω). We have thus identified a
minimum time taken by the trajectory to exit the ball of radius
R centered at y(0). Second, we show that, after some time,
the continuous trajectory never returns to the vicinity of any
spurious local minimum. To reason by contradiction, assume
that there exist i ∈ I and t1 < t3 such that ‖y(t3)− yi‖ < R.
Since the trajectory is continuous, there exists t2 ∈ (t1, t3)
such that ‖y(t2)−yi‖ = R, that is to say, there exists d ∈ Rn
such that ‖d‖ = 1 and y(t2) = yi + Rd. Take t2 to be the
largest such instance in the interval (t1, t3). We then have

〈y′(t2), d〉
= 〈−∇g(y(t2))/α− βe−λt2 [−λ sin(ωt2) + ω cos(ωt2)]u, d〉
= 〈∇g(yi +Rd),−d〉/α
− βe−λt2 [−λ sin(ωt2) + ω cos(ωt2)]〈u, d〉

> C2/α− βe−λt2 [−λ sin(ωt2) + ω cos(ωt2)]〈u, d〉

=
{
C2 − αβe−λt2

√
λ2 + ω2 cos(ωt2 + arctan(λ/ω))]

}
/α

> (C2 − αβe−λt2
√
λ2 + ω2)/α

> (C2 − αβe−λRα/(C1+αβω)
√
λ2 + ω2)/α (22)

where in the last inequality we used the fact that Rα/(C1 +
αβω) 6 t1 < t2. The Taylor expansion for t > t2 in a
neighborhood of t2 reads

y(t)− y(t2) = y′(t2)(t− t2) + o(t− t2), (23)

from which we deduce that〈
y(t)− y(t2)

t− t2
, d

〉
= 〈y′(t2), d〉+ o(1)

> (C2 − αβe−λRα/(C1+αβω)
√
λ2 + ω2)/(2α) > 0 (24)

where we used αβe−λRα/(C1+αβω)
√
λ2 + ω2 < C2. Hence

‖y(t)− yi‖ > 〈y(t)− yi, d〉 = 〈y(t)− y(t2) + y(t2)− yi, d〉
= 〈y(t)− y(t2), d〉+ 〈Rd, d〉
> R. (25)

Recall that ‖y(t3)−y(0)‖ 6 R. By continuity of the trajectory,
there exists t ∈ (t2, t3] such that ‖y(t) − yi‖ = R, which
contradicts the maximality of t2. Hence, for all t > t1 and
i ∈ I, we have that ‖y(t)− yi‖ > R.
Third, we show that x(t1) = y(t1) + βe−λt1 sin(wt1)u is in
the region of attraction of a global minimum of the function
f(x, t1). Now, we freeze the time at t1. Consider the set D =
{x ∈ Rn : f(x, t1) ≤ f(x(t1), t1)} and choose D1 as the
connected component of D which contains the point x(t1).
Because f(x, t1) is coercive, D1 is a compact set. In addition,
D1 is a positively invariant set with respect to the gradient
flow system

˙̃x(s) = −∇x̃f(x̃(s), t1) (26)

for the fixed time t1 because the gradient flow system will
not increase the function value. Denote f∗(t1) as the global
minimum value of f(x̃, t1) and take V (x̃) = f(x̃, t1) −
f∗(t1). Then, V (x̃) is a Lyapunov function for (26) such
that V̇ (x̃) = −‖∇x̃f(x̃, t1)‖2 ≤ 0 in D1. Let E be the
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points in D1 such that ∇x̃f(x̃, t1) = 0. Since g(x) has
no saddle points and local maxima outside of ∪i∈IB(yi, R),
then f(·, t1) has no saddle points and local maxima outside
of ∪i∈IB(yi + βe−λt1 sin (wt1)u,R). Thus, the set E only
contains the global minima of f(x̃, t1). Furthermore, the set E
is also an invariant set with respect to (26). Then, by LaSalle’s
theorem in [52, Theorem 4.4], the solution of (26) starting
at x(t1) converges to the global minimum as s → ∞. This
implies that x(t1) is in the region of attraction of a global
minimum of the function f(x, t1). Finally, we show that the
trajectory remains in the region of attraction of the set of global
minima after some time. This follows immediately from the
assumption that g(x) has no saddle points and local maxima
outside of ∪i∈IB(yi, R) and the fact that the trajectory will
never returns to the vicinity of any spurious local minimum,
that is, ∪i∈IB(yi, R).

Observe that a necessary condition for the absence of spuri-
ous trajectories readily follows from the proof of Theorem 3,
namely that αβ

√
ω2 + λ2 > −C2. Indeed, if αβ

√
ω2 + λ2 <

−C2, then the spurious local minima cannot be escaped, using
the same argument as in (23) and (24).

Remark 2. Spurious local minima are much more challeng-
ing to be escaped than saddle points and local maxima.
In Theorem 3, we assume that there are no saddle points
or maxima outside of a certain region containing the local
minima (i.e. ∪i∈IB(yi, R)). We do so in order to focus on the
main contribution of this work, which is that time variation
can lead to the absence of spurious local trajectories. Without
this assumption, a significant part of the proof would deal
with escaping saddle points, a subject which has already been
treated in various papers [38], [53]–[56]. If the variation of
the data occurs along a direction u chosen randomly, then it
may be argued that the trajectory would escape saddle points
with probability 1, using the stable manifold theorem [57] as
in [38], [53]–[56]. Theorem 3 would then hold almost surely.

Remark 3. Theorem 3 offers the first result in the literature
about when spurious minima of a time-invariant function
can be escaped via a time-varying deterministic local search
method. The existing results are focused on stochastic gradient
descent that offers a weaker result in a probabilistic sense
[20]. This theorem can be used to define the notion of
escapable local minima through the parameters C1 and C2,
and indeed if C1 is small enough and C2 is large enough, the
spurious local minima can always be escaped based on the
results of this theorem.

Although Theorem 3 is focused on a certain class of time-
varying functions, similar results can be obtained for other
classes of functions. The time-varying problem (4) is devoid
of spurious local trajectories if one can show that all solutions
of (6) with the initial point at any local solutions at t = 0 are
contractive and the converging trajectory is inside the region of
attraction of the global minimum trajectory of (4) after some
finite time. This can be studied via the contraction analysis of
nonlinear systems [58]–[60].

V. FUNDAMENTAL PROPERTIES OF ODE

In this section, we provide the formal versions of Theo-
rems 1 and 2 together with their proofs. We refer to the opti-
mization problem (5) as OPT(k,∆t, xk−1). Let the Jacobian
of the constraint set be defined as

J (x) =


∇xh1(x)>

∇xh2(x)>

...
∇xhr(x)>

 (27)

Definition 5. Given a feasible initial point x0, we say that the
tuple

(
x0,∆t, {x∆t

k }∞k=0

)
is an admissible KKT (AKKT) tuple

if x∆t
0 = x0 and for every k ∈ {0, 1, ...}, x∆t

k is a feasible
solution of OPT(k,∆t, x∆t

k−1), it satisfies the KKT conditions,
and J (x∆t

k ) is non-singular.

Assumption 3. There exists t > 0 such that any 0 < ∆t ≤ t
is endowed with at least one AKKT tuple

(
x0,∆t, {x∆t

k }∞k=0

)
.

Furthermore, for any AKKT tuple
(
x0,∆t, {x∆t

k }∞k=0

)
, the

sequence
{
x0, {x∆t

k }∞k=0

}
is uniformly bounded.

Roughly speaking, Assumption 3 implies that, for suffi-
ciently small time steps, the regularized problem remains
feasible with non-degenerate and bounded solutions.

According to Definition 5, the Jacobian matrix J (x∆t
k )

is non-singular for every k and every AKKT tuple(
x0,∆t, {x∆t

k }∞k=1

)
. In this work, we impose a slightly

stronger condition on the singular values of J (x∆t
k ).

Assumption 4. There exists a universal constant c > 0 such
that σmin(J (x∆t

k )) ≥ c for every k and every AKKT tuple(
x0,∆t, {x∆t

k }∞k=0

)
.

Similar to Assumption 2, this assumption requires the
constraints to be non-degenerate. Now, we are ready to present
our main theorem.

Theorem 4. Consider the ODE (6) with the condition x(0) =
x0, where x0 is a local solution to the time-varying optimiza-
tion (4) at t = 0. The following statements hold:

1. (Existence and uniqueness) (4) has a continuously differ-
entiable and unique solution x : [0, T ]→ Rn.

2. (Convergence) Any AKKT tuple
(
x0,∆t, {x∆t

k }
dT/∆te
k=0

)
satisfies

lim
∆t→0+

sup
0≤k≤dT/∆te

‖x∆t
k − x(k∆t)‖ = 0, (28)

We will regularly refer to the following lemma in our
subsequent analysis.

Lemma 1 (Lipschitz property on a ball). Given a continuously
differentiable function p(x) : Rn → Rm, we have

‖p(x)− p(y)‖ ≤ L(ε)‖x− y‖ for every x, y ∈ B(ε)

where L(ε) is a universal constant independent of x and y,
and B(ε) is the Euclidean ball centered at zero with radius ε.

Proof. The proof is straightforward and omitted.
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A. Proof of Existence and Uniqueness.

Next, we show the existence and uniqueness of the solution
to the proposed ODE. Without loss of generality, we assume
that tk − tk−1 = ∆t for every k = 1, . . . , dT/∆te. Further-
more, to simplify the notation, we may use the same symbols
to refer to different universal constants throughout the proofs.
The next three lemmas will be useful in proving the existence
of a solution (6).

Lemma 2. There exist constants t̄ and c > 0 such that for
every AKKT tuple

(
x0,∆t, {x∆t

k }
dT/∆te
k=0

)
with ∆t ≤ t̄, we

have ‖x∆t
k − x∆t

k−1‖ ≤ c∆t for k = 1, . . . ,∞.

Proof. The proof is provided in the appendix.

Lemma 3. Given an initial feasible point x0, there exist

1. {sn}∞n=1 with lim
n→∞

sn = 0 such that each sn is endowed
with an AKKT tuple (x0, sn, {xsnk }∞k=0), and

2. a continuously differentiable and uniformly bounded
function x̄ : [0, T ]→ Rn that satisfies x̄(0) = x0,

with the following properties:

lim
n→∞

sup
1≤k≤ T

sn

‖xsnk − x̄(ksn)‖ = 0, (29a)

lim
n→∞

sup
1≤k≤ T

sn

∥∥∥∥xsnk − xsnk−1

sn
− ˙̄x(ksn)

∥∥∥∥ = 0. (29b)

Moreover, there exists a universal constant c > 0 such that
σmin(J (x̄(t))) ≥ c for every t ∈ [0, T ].

Proof. The proof is provided in the appendix.

Lemma 4. Consider two continuous functions g1 : [0, T ] →
Rn and g2 : [0, T ]→ Rn. We have g1 = g2 if and only if

lim
∆t→0+

sup
0≤k≤d T

∆t e
‖g1(k∆t)− g2(k∆t)‖ = 0 (30)

Proof. The proof is straightforward and can be found in
standard references, e.g., [61].

We now provide the proof for the existence and uniqueness
of the solution for (6).

Proof of existence and uniqueness: Consider the se-
quence {sn}∞n=1 and its corresponding AKKT tuple{

(x0, sn, {xsnk }
T/sn
k=0 )

}∞
n=1

that is introduced in Lemma 3.
Due to Assumption 4, the linear independence constraint
qualification (LICQ) holds at xsnk for k = 0, . . . , T/sn
and n = 1, . . . ,∞. Therefore, for every n, there ex-
ists a sequence of Lagrangian vectors {µsnk }

T/sn
k=0 such that(

{xsnk }
T/sn
k=0 , {µ

sn
k }

T/sn
k=0

)
satisfies the KKT conditions:

∇xfk(xsnk ) + J (xsnk )>µsnk +
α

sn
(xsnk − x

sn
k−1) = 0

(Stationarity)
hi(x

sn
k ) = di,k (feasibility)

for k = 1, . . . , T/sn, where fk(xsnk ) = f(xsnk , ksn) and
di,k = di(ksn). The feasibility condition implies that for every
i, we have

1

sn

(
hi(x

sn
k )− hi(xsnk−1)

)
=
di,k − di,k−1

sn

=⇒ ∇hi(x̃sni,k)>
(
xsnk − x

sn
k−1

sn

)
=
di,k − di,k−1

sn
(31)

for some x̃sni,k = (1−αi)xsnk +αix
sn
k−1 with αi ∈ [0, 1], where

the last implication is due to the differentiability of hi(x) and
the Mean Value Theorem. For simplicity and with a slight
abuse of notation, define

J ({x̃sni,k}
r
i=1) =

∇h1(x̃sn1;k)>

...
∇hr(x̃snr;k)>

 , dk =

d1,k

...
dr,k

 (32)

This implies that

J ({x̃sni,k}
r
i=1)

(
xsnk − x

sn
k−1

sn

)
=
dk − dk−1

sn
(33)

Combining this equality with the stationarity condition leads to

J ({x̃sni,k}
r
i=1)∇xfk(xsnk ) + J ({x̃sni,k}

r
i=1)J (xsnk )>λsnk

+α

(
dk − dk−1

sn

)
= 0 (34)

Now, note that, due to Assumption 4, σmin(J (xsnk )) ≥ c
for some universal constant c > 0. Therefore, for every
y sufficiently close to xsnk , J (y) remains full-row rank.
Together with the definition of {x̃sni,k}ri=1 and Lemma 7 in the
appendix, this implies that J ({x̃sni,k}ri=1)J (xk)> is invertible
for sufficiently small ∆t. Therefore,

λsnk =−
(
J ({x̃sni,k}

r
i=1)J (xsnk )>

)−1

(35)

×
(
J ({x̃sni,k}

r
i=1)∇xfk(xsnk ) + α

(
di;k − di;k−1

sn

))
Substituting this into the stationarity condition and performing
the necessary simplifications lead to

xsnk −x
sn
k−1

sn
= − 1

α

(
I−J (xsnk )>

×
(
J ({x̃sni,k}

r
i=1)J (xsnk )>

)−1

J ({x̃sni,k}
r
i=1)

)
∇xfk(xsnk )

+ J (xsnk )>
(
J ({x̃sni,k}

r
i=1)J (xsnk )>

)−1
(
dk − dk−1

sn

)
:= g

(
{x̃sni,k}

r
i=1, x

sn
k ,

(
dk − dk−1

sn

))
(36)

Consider the continuously differentiable function x̄(t) that
is introduced in Lemma 3. The above equality together
with (29b) implies that

lim
n→∞

sup
0≤k≤d T

sn
e

∥∥∥∥∥ ˙̄x(ksn) (37)

− g
(
{x̃sni,k}

r
i=1, x

sn
k ,
(dk − dk−1

sn

))∥∥∥∥∥ = 0
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Therefore, one can write

lim
n→∞

sup
0≤k≤d T

sn
e

∥∥∥∥∥ ˙̄x(ksn) (38)

− g
(
{x̄(ksn)}ri=1, x̄(ksn), ḋ(ksn

)∥∥∥∥∥
≤ lim
n→∞

sup
0≤k≤d T

sn
e

∥∥∥∥∥ ˙̄x(ksn)

− g
(
{x̃sni,k}

r
i=1, x

sn
k ,

(
dk − dk−1

sn

))∥∥∥∥∥
+ lim
n→∞

sup
0≤k≤d T

sn
e

∥∥∥∥∥g ({x̄(ksn)}ri=1, x̄(ksn), ḋ(ksn)
)

− g
(
{x̃sni,k}

r
i=1, x

sn
k ,

(
dk − dk−1

sn

))∥∥∥∥∥
We present the following lemma.

Lemma 5. Given ({x̄i}ri=1, ȳ, z̄) with (
∑r
i=1 ‖x̄i‖) +

‖ȳ‖ + ‖z̄‖ ≤ c1 for some c1 > 0, suppose
that σmin

(
J ({x̄i}ri=1)J (ȳ)>

)
≥ c2 for some c2 >

0. Then, there exist constants L, r > 0, such that
g({x̄i}ri=1, ȳ, z̄) is locally L-Lipschitz continuous in B =
{({xi}ri=1, y, z) | (

∑r
i=1 ‖x̄i − xi‖)+‖ȳ−y‖+‖z̄−z‖ ≤ r}.

Proof. Due to the continuous differentiability of J (x) and
Lemma 1, it is easy to see that r can be chosen such that
σmin

(
J ({xi}ri=1)J (y)>

)
≥ c2/2 for every ({xi}ri=1, y, z) ∈

B(r). This observation, together with the definition of g(·, ·, ·)
in (36), can be used to complete the proof. The details are
omitted for brevity.

According to Lemma 5, the function g(·, ·, ·) is locally Lip-
schitz continuous on a ball with nonzero radius and centered
at
(
{x̃sni,k}ri=1, x

sn
k ,
(
dk−dk−1

sn

))
for every 0 ≤ k ≤ d T∆te and

n = 1, . . . ,∞. This together with the definition of {x̃sni,k}ri=1,
the differentiability of d(t), and Lemma 3 implies that for
sufficiently large n (or, equivalently, for sufficiently small sn),
there exists a Lipschitz constant L such that∥∥∥∥∥g ({x̄(ksn)}ri=1, x̄(ksn), ḋ(ksn)

)
(39)

− g
(
{x̃sni,k}

r
i=1, x

sn
k ,

(
dk − dk−1

sn

))∥∥∥∥∥
≤L

(
r∑
i=1

‖x̄(ksn)− x̃sni,k‖+ ‖x̄(ksn)− xsnk ‖

+

∥∥∥∥ḋ(ksn)−
(
dk − dk−1

sn

)∥∥∥∥
)

≤ L

(
(r + 1)‖x̄(ksn)− xsnk ‖+ r‖x̄((k − 1)sn)− xsnk−1‖+

r‖x̄(ksn)− x̄((k − 1)sn)‖+

∥∥∥∥ḋ(ksn)−
(
dk − dk−1

sn

)∥∥∥∥
)

where we used the definition of {x̃sni,k}ri=1 and triangle inequal-
ity. According to Lemmas 2 and 3, the right-hand side of (39)
converges to zero as n → ∞. Therefore, combining (39)
and (37) with (38) implies that

lim
n→∞

sup
0≤k≤d T

sn
e

∥∥∥∥∥ ˙̄x(ksn) (40)

− g
(
{x̄(ksn)}ri=1, x̄(ksn), ḋ(ksn

)∥∥∥∥∥ = 0

Furthermore, due to Lemma 3, J (x̄(t)) is full-row rank at
every t ∈ [0, T ] and therefore, g({x̄(t)}ri=1, x̄(t), ḋ(t)) is
continuous as a function of t in [0, T ]. Invoking Lemma 4
then leads to

˙̄x(t) = g({x̄(t)}ri=1, x̄(t), ḋ(t)) (41)

at every t ∈ [0, T ]. This shows that x̄ : [0, T ] → Rn
is a solution to (6). Finally, due to Lemma 3, we have
σmin(J (x̄(t))) ≥ c for a universal constant c > 0. Therefore,
Lemma 5 can be used to verify the existence of an open
and connected set D such that g(·, ·, ·) is locally L-Lipschitz
continuous on D and (x̄(t), t) ∈ D for every t ∈ [0, T ].
Therefore, Theorem 2.2 in [44] can be used to show that
x̄ : [0, T ]→ Rn is the unique solution to (6).

B. Proof of Convergence

Next, we show the validity of the second statement in
Theorem 4.

Lemma 6 (Backward Euler Iterations). There exists a uni-
versal constant t̄ such that for every ∆t ≤ t̄, there exists a
sequence {y∆t

k }
dT/∆te
k=0 that satisfies the following statements:

- We have y∆t
0 = x0 and

y∆t
k = y∆t

k−1 + ∆t · g
(
{y∆t
k }ri=1, y

∆t
k , ḋ(sk)

)
(42)

for k = 1, . . . , dT/∆te.
- There exists a universal constant c2 > 0 such that ‖y∆t

k −
y∆t
k−1‖ ≤ c2∆t for k = 1, . . . , dT/∆te.

- We have

lim
∆t→0+

sup
0≤k≤dT/∆te

‖y∆t
k − x(sk)‖ = 0 (43)

where x : [0, T ]→ Rn is the unique solution to (6).
- We have σmin(J (y∆t

k )) ≥ c1 for some universal c1 and
every k = 1, . . . , dT/∆te.

Proof. Note that (42) is the backward Euler iterations
for (6) [62]. Furthermore, we have already shown the exis-
tence of a continuously differentiable and uniformly bounded
solution to (6). The proof of the first three statements is
immediately followed by the classical results on convergence
of the backward Euler method; see [62] for more details.
To verify the correctness of the last statement, note that
we have shown in the previous subsection that the function
x̄ : [0, T ]→ Rn introduced in Lemma 3 is indeed the unique
solution to the proposed ODE and we have J (x̄(t)) ≥ c for
some universal c > 0 and every t ∈ [0, T ]. This together
with (43) and Lemma 1 concludes the proof.
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Proof of convergence: The main idea behind the proof is
to show that, given any AKKT tuple

(
x0,∆t, {x∆t

k }
dT/∆te
k=1

)
,

we have

lim
∆t→0+

sup
0≤k≤dT/∆te

‖y∆t
k − x∆t

k ‖ = 0 (44)

Establishing this equality together with Lemma 6 is enough
to complete the proof.

It is evident from (36) that the AKKT tuple(
x0,∆t, {x∆t

k }
dT/∆te
k=1

)
should satisfy

x∆t
k = x∆t

k−1 + ∆tg

(
{x̃∆t

i,k}ri=1, x
∆t
k ,

(
dk − dk−1

∆t

))
(45)

where x̃tni;k = (1 − αi)x
tn
k + αix

tn
k−1 with αi ∈ [0, 1] for

i = 1, . . . , n. Combined with the first statement of Lemma 6,
this implies that

x∆t
k −y∆t

k = x∆t
k−1−y∆t

k−1 (46)

+∆t

(
g

(
{x̃∆t

i,k}ri=1, x
∆t
k ,

(
dk − dk−1

∆t

))

− g
(
{y∆t
k }ri=1, y

∆t
k , ḋ(sk)

))
= x∆t

k−1−y∆t
k−1 +A+B

where

A =∆t×

(
g

(
{x̃∆t

i,k}ri=1, x
∆t
k ,

(
dk−dk−1

∆t

))

−g
(
{y∆t
k−1}ri=1, y

∆t
k−1, ḋ(sk)

))
, (47a)

B =∆t×

(
g
(
{y∆t
k−1}ri=1, y

∆t
k−1, ḋ(sk)

)
− g

(
{y∆t
k }ri=1, y

∆t
k , ḋ(sk)

))
. (47b)

Define Ek = ‖x∆t
k −y∆t

k ‖ as the error at time-step k. Note
that, due to the Lemmas 3, 6, and 5, as well as the construction
of {x̃∆t

i,k}ri=1, there exist universal constants L, c̄, t̄ > 0
such that, for every ∆t ≤ t̄, g(·, ·, ·) is locally L-Lipschitz
continuous in the balls

B1 =

{
({xi}ri=1, y, z)

∣∣∣∣∣
(

r∑
i=1

‖x̃∆t
i,k − xi‖

)
(48)

+ ‖x̃∆t
k − y‖+

∥∥∥∥(dk − dk−1

∆t

)
− z
∥∥∥∥ ≤ c̄

}
,

and

B2 =

{
({xi}ri=1, y, z)

∣∣∣∣∣
(

r∑
i=1

‖y∆t
k − xi‖

)

+ ‖y∆t
k − y‖+

∥∥∥ḋ(sk)− z
∥∥∥ ≤ c̄}. (49)

To simplify the notation, we denote
∥∥∥(dk−dk−1

∆t

)
− ḋ(sk)

∥∥∥
as D. The following chain of inequalities will be useful in
bounding the expression A in (46):(

r∑
i=1

∥∥x̃∆t
i,k − y∆t

k−1

∥∥)+
∥∥x∆t

k − y∆t
k−1

∥∥+D

≤ r
∥∥x∆t

k−1 − y∆t
k−1

∥∥+ (r + 1)
∥∥x∆t

k − y∆t
k−1

∥∥+D

≤ r
∥∥x∆t

k−1 − y∆t
k−1

∥∥+ (r + 1)
∥∥x∆t

k − x∆t
k−1

∥∥
+ (r + 1)

∥∥x∆t
k−1 − y∆t

k−1

∥∥+D

= (2r + 1)Ek−1 + (r + 1)
∥∥x∆t

k − x∆t
k−1

∥∥+D

≤ (2r + 1)Ek−1 + (r + 1)c1∆t+ c2∆t2

≤ (2r + 1)Ek−1 + ((r + 1)c1 + c2)∆t (50)

provided that ∆t ≤ t̄1, where t̄1, c1, c2 > 0 are constants.
Note that the last two inequalities are due to Lemma 2 and
the twice differentiability of d(t).

Subsequently, the next inequality will be used to bound the
expression B in (46). In particular, Lemma 6 can be used to
show the existence of constants c3, t̄2 > 0 such that

(r + 1)‖y∆t
k−1 − y∆t

k ‖ ≤ c3∆t (51)

provided that ∆t ≤ t̄2. Given the inequalities (50) and (51), we
prove the validity of (28) by proving the following statements:

1. There exists a universal constant t̄3 such that for every
∆t ≤ t̄3 and k = 0, . . . , T/∆t, (50) and (51) will be
upper bounded by c̄ which is defined as the radius of
the balls (48) and (49). This together with the locally L-
Lipschitz continuity of g(·, ·, ·) within the balls B1 and
B2 leads to

‖A‖ ≤ (2r + 1)L∆tEk−1 + ((r + 1)c1 + c2)L∆t2

(52a)

‖B‖ ≤ c3L∆t2 (52b)

Combining these inequalities with (46) results in the
following recursive inequality:

Ek ≤(1 + (2r + 1)L∆t)Ek−1

+ ((r + 1)c1 + c2 + c3)L∆t2 (53)

2. We have lim∆t→0+ sup0≤k≤T/∆tEk = 0.
We prove the first statement using an inductive argument on
k. In particular, we show that if the following inequality holds

∆t ≤ min

{
t̄1, t̄2,

(2r + 1)c̄

((r + 1)c1 + c2 + c3)(e(2r+1)TL − 1)
,

,

√
c̄

((r + 1)c1 + c2 + c3)L
,

}
= t̄3 (54)

then (50) and (51) remain in the balls B1 and B2, respectively
and hence, (53) holds for k = 0, . . . , T/∆t.

Base case: k = 1. Note that in this case, E0 = 0 and
therefore, based on (54), we have ∆t ≤ t̄1 and ∆t ≤ t̄2.
This implies that both (50) and (51) are upper bounded by c̄
and, based on (53), we have

E1 ≤ (1 + (2r + 1)L∆t)E0 + ((r + 1)c1 + c2 + c3)L∆t2

= ((r + 1)c1 + c2 + c3)L∆t2 ≤ c̄ (55)
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where the last inequality is due to (54).
Inductive step. Suppose that we have

(2r + 1)Ek−1 + ((r + 1)c1 + c2)∆t ≤ c̄, c3∆t ≤ c̄ (56a)

for k = 0, . . . ,m − 1. This implies that (53) holds for k =
1, . . . ,m. With some algebra, one can verify that

Em ≤ ((r + 1)c1 + c2 + c3)L∆t2
m−1∑
i=0

(1 + (2r + 1)L∆t)i

≤ ((r + 1)c1 + c2 + c3)L∆t2 · (1 + (2r + 1)L∆t)m − 1

(2r + 1)L∆t

≤ (r + 1)c1 + c2 + c3
2r + 1

(
(1 + (2r + 1)L∆t)T/∆t − 1

)
∆t

≤ (r + 1)c1 + c2 + c3
2r + 1

(
e(2r+1)LT − 1

)
∆t ≤ c̄ (57)

which completes the proof of the first statement. To prove the
second statement, note that the above analysis leads to

sup
0≤k≤T/∆t

Ek ≤
(r + 1)c1 + c2 + c3

2r + 1

(
e(2r+1)LT − 1

)
∆t

assuming that ∆t ≤ t̄3. Due to the fact that t̄3 > 0 and is
independent of ∆t, we have

lim
∆t→0+

sup
0≤k≤T/∆t

Ek = 0 (58)

thereby completing the proof of the convergence.

VI. PROPERTIES OF SYSTEM’S JACOBIAN

In this section, we additionally assume that the objective
function f(x, t) is twice continuously differentiable in x.
For the constraint functions h = (h1, h2, . . . , hm), the cor-
responding Hessian matrices H1, H2, . . . ,Hm ∈ Rn×n are
the second partial derivative of h with respect to x. The
second-order derivative operator of h, denoted by H , is now
regarded as the m-tuple H = (H1, . . . ,Hm). For µ ∈ Rm and
x ∈ Rn, µH denotes µ1H1 + . . .+µmHm and x>Hx denotes
x>H1x + . . . + x>Hmx. For M1,M2 ∈ Rn×n, M1HM2x
denotes [M1H1M2x, . . . ,M1HmM2x]. In addition, we have
the identity µx>Hx = x>µHx.

Consider the time-invariant optimization problem:

inf
x∈Rn

f(x) s.t. h(x) = d (59)

where h(x) = [h1(x), . . . , hm(x)]T and d = [d1, . . . , dm]T .
The corresponding ODE is given by

ẋ = − 1

α

[
I − J (x)>(J (x)J (x)>)−1J (x)

]
∇f(x). (60)

The above ODE is known as the Riemannian gradient flow,
and it is well-studied in the literature [46]–[48]. Let z be a
local minimum of (59) satisfying the first-order necessary and
second-order sufficient optimality conditions:

h(z) = d, J (z)J (z)> is invertible (61a)

∇f(z) + µJ (z) = 0, w>
(
∇2f(z) +H(z)

)
w > 0 (61b)

for some µ ∈ Rm and every nonzero vector w such that
J (z)>w = 0. Note that z is an equilibrium point of the

system (60). Let the right-hand side of (60) be denoted by
p(x):

p(x) := − 1

α
P(x)∇xf(x) (62)

where P(x) = I−J (x)>(J (x)J (x)>)−1J (x) and let Jp(z)
denote the Jacobian of p(x).

Theorem 5. It holds that

Jp(z) = − 1

α

(
∇2f(z) + µH(z)

)
P(z). (63)

Moreover, Jp(z) has n − m eigenvalues with negative real
parts and m zero eigenvalues.

Proof. The equation (63) follows from Corollary 1 in [63]. To
study the eigenvalues of Jp(z), note that Jp(z)J (z)> = 0.
Therefore, Jp(z) has at least m zero eigenvalues. Let w ∈ Rn
be an arbitrary nonzero vector in the tangent plane of the
manifold {x : h(x) = d} at the point x = z. This means that
J (z)>w = 0. On the other hand, the second-order sufficient
optimality condition states that w>

(
∇2f(z) + µH(z)

)
w >

0. Therefore, we have w>Ωw > 0, where

Ω =P(z)
(
∇2f(z) + µH(z)

)
P(z). (64)

Since J (z) is in the null space of the symmetric matrix Ω
and w>Ωw > 0 for every w that is orthogonal of J (z), it can
be concluded that Ω has n−m eigenvalues with positive real
parts. On the other hands, the eigenvalues of Ω are the same
of the eigenvalues of the matrix(
∇2f(z) + µH(z)

)
P2(x) =

(
∇2f(z) + µH(z)

)
P(z) (65)

which is the identical to −αJp(z).

As shown above, the eigenvalues of the Jacobian only have
non-positive real parts. This explains why spurious solutions of
a time-invariant optimization problem cannot be escaped using
gradient-based methods, such as the ODE (60). Now, consider
its time-varying counterpart problem (4) and associated ODE
(6). Let z(t) : [0, T ] → Rn be a local solution of (4) that
satisfies the first-order necessary and second-order sufficient
optimality conditions for all t ∈ [0, T ]. Let µ(t) denote
the corresponding Lagrange multiplier and Q(z(t)) denote
J (z(t))>(J (z(t))J (z(t))>)−1. Since z(t) is generally not
the solution of the ODE (6), we make a change of variables
e(t) = x(t)− z(t) to measure the distance between x(t) and
z(t). Then, the ODE (6) can be rewritten as

ė(t) = − 1

α
η(e(t) + z(t), t) + θ(e(t) + z(t))ḋ− ż(t) (66)

Let Jq(z(t)) denote the Jacobian of the right-hand side of (66)
at the point e(t) = 0. By taking the first-order approximation
of (66) around z(t), we have

ė(t) = Jq(z(t))e(t) +O(e2(t))− ż(t). (67)

Theorem 6. It holds that

Jq(z(t)) = K1(t) +K2(t) (68)
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where

K1(t) =− 1

α

(
∇2f(z(t)) + µ(t)H(z(t))

)
P(z(t)), (69a)

K2(t) =
(
P (z(t))H(z(t))

(
J (z(t))J (z(t))>

)−1
(69b)

−Q(z(t))H(z(t))Q(z(t))
)
ḋ(t). (69c)

Proof. The computation of K1(t) is similar to that of Theorem
5. Because of the tensor nature of H it is convenient to
differentiate with respect to each component separately. For
the component z1(t), we have

d

dz1(t)
Q(z(t))ḋ(t) = H1(z(t))

(
J (z(t))J (z(t))>

)−1
ḋ(t)

− J (z(t))>
(
J (z(t))J (z(t))>

)−1
(
H1(z(t))J (z(t))>

+ J (z(t))H1(z(t))
) (
J (z(t))J (z(t))>

)
ḋ(t)

=
(
P (z(t))H1(z(t))

(
J (z(t))J (z(t))>

)−1

−Q(z(t))H1(z(t))Q(z(t))
)
ḋ(t).

Similar expressions apply to derivatives with respect to other
components. These columns can be combined into the matrix[ d

dz1(t)
Q(z(t)), . . . ,

d

dzn(t)
Q(z(t))

]
ḋ(t).

This matrix is K2(t).

Notice that K1(t) has only eigenvalues with non-positive
reals (due to Theorem 5) but K2(t) may have eigenvalues
with positive reals depending on the time-variation. Thus,
the time variation could potentially make the linear system
˙̄e(t) = Jq(z(t))ē(t) unstable. If O(e2(t))− ż(t) is not large,
we may expect that the solution of (67) will behavior similarly
to ˙̄e(t) = Jq(z(t))ē(t) and cannot stay around the point 0.
Thus, the time-variation may provide the opportunity to escape
the spurious local trajectory z(t). Note that the linearization
does not always provide a concrete answer for time-varying
ODEs, but this result offers an insight into how the data
variation changes the eigenvalues of the Jacobian along a
trajectory close to a KKT trajectory.

VII. CONCLUSION

In this work, we study the landscape of time-varying
nonconvex optimization problems. We introduce the notion
of spurious local trajectory as a counterpart to the notion of
spurious local minima in the time-invariant optimization. The
key insight to this new notion is the fact that a regularized
version of the time-varying optimization problem is naturally
endowed with an ordinary differential equation (ODE) at its
limit. This close interplay enables us to study the solutions
of this ODE to certify the absence of the spurious local
trajectories in the problem. Through different case studies and
theoretical results, we show that a time-varying optimization
may have multiple spurious local minima, and yet its landscape
can be free of spurious local trajectories. We further show that
the variation of the landscape over time is the main reason
behind the absence of spurious local trajectories.

As a future research direction, we will study the robustness
of the solution trajectories against perturbations, along the
same lines as [64]. Furthermore, it would be worthwhile to
extend the notion of spurious local trajectories to time-varying
optimization over an infinite-time horizon.

APPENDIX

Lemma 7. We have ‖x∆t
k − x∆t

k−1‖ = O(
√

∆t) for every k =
0, . . . , dT/∆te.

Proof. Note that f(x, t) is uniformly bounded from below.
Furthermore, for every AKKT tuple

(
x0,∆t, {x∆t

k }
dT/∆te
k=0

)
,

the sequence {x∆t
k }
dT/∆te
k=0 is assumed to be uniformly

bounded. This together with Assumption 1 implies that

f(x∆t
k , tk) +

α

2∆t
‖x∆t

k − x∆t
k−1‖2 ≤ R (70)

for some R <∞. Since f(x∆t
k , tk) is assumed to be uniformly

bounded from below, this leads to α
2∆t‖x

∆t
k − x∆t

k−1‖2 ≤ R′

for some R′ < ∞, which in turn yields ‖x∆t
k − x∆t

k−1‖ =

O(
√

∆t).

Proof of Lemma 2. Due to Lemma 7 and the fact that J (x)
is continuously differentiable, one can invoke Lemma 1 to
show that there exist constants t̄, c1, c2 > 0 such that the
following statements hold, provided that ∆t ≤ t̄:

1. Consider a sequence {x̃∆t
i,k}ri=1 constructed similar

to (33). Due to Assumption 4 and Lemma 7, it
can be verified that there exist t̄, c1 > 0 such that
σmin(J ({x̃∆t

i,k}ri=1)J (x∆t
k )>) ≥ c1 for all ∆t ≤ t̄. This

implies that the function g
(
{x̃∆t

i,k}ri=1, x
∆t
k ,
(
dk−dk−1

∆t

))
introduced in (36) is well-defined and continuous for all
∆t ≤ t̄.

2. Assumption 3 and twice differentiability of d with respect
to t imply that

{
{x̃∆t

i,k}ri=1, x
∆t
k

}
and

(
dk−dk−1

∆t

)
belong

to a compact set. Combined with the continuity of g(·),
this implies that∥∥∥∥g({x̃∆t

i,k}ri=1, x
∆t
k ,

(
dk − dk−1

∆t

))∥∥∥∥ ≤ c2 (71)

for some c2 > 0.
3. Similar to (36), one can verify that the following equality

holds:
x∆t
k − x∆t

k−1

∆t
= g

(
{x̃∆t

i,k}ri=1, x
∆t
k ,

(
dk − dk−1

∆t

))
Combined with (71), this implies that ‖x∆t

k − x∆t
k−1‖ ≤ c2∆t

and the proof is complete. �
Proof of Lemma 3. Consider a sequence {sn}∞n=1 such that

sn > 0 and limn→∞ sn = 0. Furthermore, without loss
of generality, we assume that T/sn is a natural number for
every n = 1, . . . ,∞. Given any n, consider a AKKT tuple
(x0, sn, {xsnk }∞k=0) and define a vector-valued function x̃sn :
[0, T ] → Rn whose ith element is the spline interpolation of
the ith elements of the vectors {xsn0 , xsn1 , . . . , xsnT/sn}. Notice
that this interpolation can be made in such a way that x̃sn is
continuously differentiable. We prove this lemma by showing
that there exist a continuously differentiable function x̄ and a
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(a) Inequalities in function of α, β guaranteeing
absence of spurious trajectories.

(b) Sufficient condition in blue in function of α, β
for absence of spurious trajectories.

(c) Non-spurious trajectory for α = 0.4 and β =
10.

(d) Spurious trajectory for α = 0.2 and β = 5.

Fig. 4: Analysis of Example 1.

subsequence {x̃tnr
}∞r=1 of {x̃sn}∞n=1 such that {x̃tnr

}∞r=1 and
{ ˙̃xtnr

}∞r=1 converge uniformly to x̄ and ˙̄x, respectively. Note
that x̃sn is continuous for n = 1, . . . ,∞, due to Lemma 2.
Consider the class of functions X = {x̃sn | n = 1, . . . ,∞}.
X is uniformly bounded (due to Assumption 4) and equicon-
tinuous. Therefore, the Arzelà-Ascoli theorem can be invoked
to show the existence of a uniformly convergent subsequence
{x̃tnk

}∞k=1. Let x̄ : [0, T ] → Rn be the limit of {x̃tnk
}∞k=1.

Now, consider the sequence { ˙̃xtnk
}∞k=1. Notice that, due to

the construction, { ˙̃xtnk
}∞k=1 is continuous. Consider the class

of functions X̄ = { ˙̃xtnk
| k = 1, . . . ,∞}. Similar to the

previous case, X̄ is uniformly bounded and equicontinuous.
Therefore, another application of Arzelà - Ascoli theorem
implies that { ˙̃xtnk

}∞k=1 has a subsequence { ˙̃xtnr
}∞r=1 that

converges uniformly to a function y : [0, T ] → Rn. Since
{nr}∞r=1 ⊆ {nk}∞k=1, we have that {x̃tnr

}∞r=1 converges
uniformly to x̄. Therefore, due to Theorem 7.17 of [62],
we have ˙̄x = y. Finally, recall that {xsnk }∞n=1 is uniformly
bounded and there exists a universal constant c such that
J (xsnk ) ≥ c for k = 0, . . . , T/sn and n = 1, . . . ,∞. This
implies that the function sequence {x̃tnr

}∞r=1 is also uniformly
bounded and since they converge uniformly to x̄, one can
invoke Lemma 1 to verify the existence of a universal c′ > 0
such that c ≥ c′ and J (x̄(t)) ≥ c′ for every t ∈ [0, T ]. �
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