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Abstract— This paper is concerned with the distributed
averaging problem subject to a quantization constraint. Given
a group of agents associated with scalar numbers, it is assumed
that each pair of agents can communicate with each other with
a prescribed probability, and that the data being exchanged
between them is quantized. In this part of the paper, it is proved
that the stochastic gossip algorithm proposed in a recent paper
leads to reaching the quantized consensus. Some important
properties of the system in the steady-state (after reaching
the consensus) are also derived. The results developed here
hold true for any arbitrary quantization, provided the tuning
parameter of the gossip algorithm is chosen properly. The
expected value of the convergence time is lower and upper
bounded in the second part of the paper.

I. INTRODUCTION

Consider a group of agents, each of which is associ-
ated with some data such as a real number or an image.
The problem of contriving a strategy by means of which
all agents can update themselves so that they agree upon
some universal shared data is called the consensus or state
agreement problem [1], [2]. Consensus has a long history
in computer science, particularly in distributed computation
where a program is divided into parts that run simultaneously
on multiple computers communicating over a network [3],
[4].

There are many important real-world problems whose
treatment is contingent upon the notion of consensus. In
the load-balancing problem, the tasks of disparate processors
are to be equalized in order to refrain from overloading
any processor [5], [6]. In the synchronization of coupled
oscillators appearing in systems biology, the frequencies of
oscillation of all agents are desired to become equal [7], [8].
In multi-agent coordination and flocking, there are a number
of applications in which the state-agreement problem shows
up [9], [10]. For instance, the heading angles of different
mobile agents may be required to be aligned [11]. In a
sensor network comprising a set of sensors measuring the
same quantity in a noisy environment, the state estimations
of different agents must be averaged [12]. A more complete
survey on these topics is given in the recent paper [2].

Consider the distributed average consensus in which the
values owned by the agents are to be averaged in a distributed
fashion. Since it may turn out in some applications that
all agents cannot update their numbers synchronously, the
gossip algorithm has been widely exploited by researchers
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to handle the averaging problem asynchronously [13], [14].
This type of algorithm selects a pair of agents at each time,
and updates their values based on some averaging policy.
The consensus problem in the context of gossip algorithm
has been thoroughly investigated in the literature [15], [16],
[17], [18].

In light of communication constraints, the data being
exchanged between any pair of agents is normally to be
quantized. This has given rise to the emergence of quantized
gossip algorithms. The notion of quantized consensus is
defined in [17] for the case when quantized values (inte-
gers) are to be averaged over a connected network with
digital communication channels. This paper shows that the
quantized gossip algorithm leads to reaching the quantized
consensus. This result is extended in [18] to the case when
the quantization is uniform, and the initial numbers owned
by the agents are reals (as opposed to being integers). The
paper [18] shows that the quantized gossip algorithm works
for a particular choice of the updating parameter, although
it conjunctures that this result is true for a wide range of
updating parameters. A related paper on quantized consensus
gives a synchronous algorithm in order to reach a consensus
with arbitrary precision, at the cost of not preserving the
average of the initial numbers [19].

Part I of the current work starts with proving the above-
mentioned property of quantized consensus. More precisely,
a weighted connected graph is considered together with a
set of scalars sitting on its vertices. The weight of each edge
represents the probability of establishing a communication
between its corresponding vertices through the updating pro-
cedure. It is shown that the quantized consensus is reached
under the stochastic gossip algorithm proposed in [18], for a
range of updating parameters. The results hold true for any
arbitrary quantizer, including uniform and logarithmic ones.
Some elegant properties of the system in the steady state
(after reaching the consensus) are subsequently derived. The
second part of the paper deals with the expect value of the
time at which the consensus is reached [20]. This quantity
(in the worst case) is upper and lower bounded in terms of
the weighted Laplacian of the graph. A convex optimization
is then proposed to investigate what set of weighes on the
edges results in the smallest convergence time.

This paper is organized as follows. Some preliminaries
are presented in Section II, and the problem is formulated
accordingly. The convergence proof is provided in Section III
for uniform quantizers, and is generalized to arbitrary quan-
tizers in Section IV. The results are illustrated in Section V
through simulations. Some concluding remarks are finally



drawn in Section VI.

II. PROBLEM FORMULATION

Consider a connected weighted graph G = (V, E ,P),
where:
• V := {v1, v2, ..., vν} is the set of vertices of G;
• E is the set of edges of G;
• P := {pij}i,j is the set of weights assigned to the edges

of G.
Assume that:
•

∑
i,j∈ν pij is equal to 2, where ν := {1, 2, ..., ν}.

• pij , i, j ∈ ν, is equal to zero if (i, j) 6∈ E ; otherwise, it
is strictly positive. In particular, p11, p22, ..., pνν are all
equal to zero.

The scalar pij associated with the edge (i, j) represents the
probability of choosing the edge (i, j) when an edge of G
is to be picked at random. Suppose that a real number xi

has been assigned to the vertex vi, for any i ∈ ν. Let q(x) :
< → < be a given quantization operator, which can be, for
instance, a logarithmic or constant quantizer. In what follows,
a quantized gossip algorithm is presented [18].

Algorithm 1:
Step 1: Given a positive real ε, set k = 0. Define xi[0] := xi,
for any i ∈ ν.
Step 2: Pick an edge of G at random.
Step 3: Suppose that the ending vertices of the edge selected
in step 2 possess the values xi[k] and xj [k]. Perform the
following updates:

xi[k + 1] = xi[k] + ε× (
q(xj [k])− q(xi[k])

)
,

xj [k + 1] = xj [k] + ε× (
q(xi[k])− q(xj [k])

)
,

xq[k + 1] = xq[k], ∀q ∈ ν\{i, j}
(1)

Step 4: Increase k by 1 and jump to step 2.
Let the short-hand notation:

x[k] =
[

x1[k] x2[k] · · · xν [k]
]
, k ∈ Z (2)

be used hereafter.
The next definition is extracted from [18].
Definition 1: Given a quantization-based protocol acting

on G(V, E) (e.g. the deterministic gossip algorithm), assume
that the vector x[k] denotes the values on the vertices of G
at time k, obtained using this protocol. It is said that the
quantized consensus is reached for the graph G under the
protocol C if for any arbitrary initial state xi[0] ∈ <ν , there
exists a natural number k0 such that:

|xi[k]− xave| < 1, ∀k ≥ k0, ∀i ∈ ν (3)

where xave := x1[0]+x2[0]+···+xν [0]
ν .

In line with the above definition, if the protocol C is
stochastic (e.g. Algorithm 1), one would say that the quan-
tized consensus is reached almost surely if there exists a
number k0 ∈ N, almost surely, for which the inequality (3)
holds. In the rest of the paper, the short name consensus will
be used for quantized consensus.

It is shown in [18] that if the quantizer q(x) is uniform, the
consensus is reached almost surely for the graph G(V, E ,P)

under the stochastic gossip algorithm described above (Algo-
rithm 1), provided ε = 0.5. This paper also conjectures that
the same result holds true for any positive ε < 0.5, while
it may not be necessarily true for ε > 0.5 (as simulation
confirms). The objective of this part of the paper is twofold.
This conjecture is to be proved first. The results are then to
be extended to general quantizers.

III. MAIN RESULTS

In the remainder of the paper, assume that ε ∈ (0, 0.5]
(unless otherwise stated). Let xmax and xmin be defined as:

xmax := max
i∈ν

dxie, xmin := min
i∈ν

bxic (4)

where d·e and b·c stand for the ceiling and floor operators,
respectively.

Definition 2: Define S to be the set of all ν-tuple
(α1, α2, ..., αν) such that αi ∈ [xmin, xmax] and, in addition,
(αi − xi) is an integer multiple of ε, for any i ∈ ν.

Algorithm 1 is stochastic in the sense that an edge must
be chosen at random at each time update. The deterministic
version of this algorithm can be obtained by replacing its
step 2 with the following:
Step 2: Pick an edge of G arbitrarily (at the discretion of the
designer).

Let the deterministic version of Algorithm 1 be referred
to as “Algorithm 2”.

Theorem 1: Assume that step 2 of Algorithm 2 (i.e.
picking an edge arbitrarily) can be taken in such a way
that the consensus is reached for the graph G(V, E) under
Algorithm 2. Then, the consensus is reached almost surely
for the graph G(V, E ,P) under Algorithm 1.

Proof: Apply Algorithm 1 to the graph G with the initial
state x[0]. Using induction, one can easily conclude from the
equation (1) that:

i) xi[k] is always in the interval [xmin, xmax], for any
k ∈ N ∪ {0} and i ∈ ν.

ii) The vector x[k] belongs to the set S , for any k ∈ N ∪
{0}.

It can be inferred from property (ii) that x[k] always belongs
to a finite set, while the argument k changes from 0 to
infinity. Therefore, there exists a ν-tuple α ∈ S and an
infinite set N0 ⊂ N such that:

x[k] = α, ∀k ∈ N0 (5)

By assumption, the consensus is reached for the graph G
under Algorithm 2, by commencing from the initial state α.
Assume that the consensus is reached at time µ, and that the
edge ej is chosen at time j in step 2 of Algorithm 2, for
j = 1, 2, ..., µ. One can observe that:
• If µ edges of G are to be chosen successively at

random, the probability of ending up with the sequence
(e1, e2, ..., eµ) is positive.

• The vector α shows up on the vertices of G infinitely
many times if Algorithm 1 is applied to the graph with
the initial state x[0].



The two observations pointed out above substantiate that
almost surely there exists an η in N0 such that the edge ej

is selected in step 2 of Algorithm 1 at time η + j, for any
j ∈ {1, 2, ..., µ}. This implies that the consensus is reached
at the time k0 := η + µ. ¥

Theorem 1 states that in order to prove the convergence
of the stochastic gossip algorithm, it suffices to show that
of its deterministic version. Hence, this converse statement
will be proved in the sequel. Throughout the rest of this
section, assume that q(x) is a uniform quantizer, i.e. it rounds
any real x to its nearest integer (by convention, assume that
q(r + 0.5) = r, ∀r ∈ Z). The results will be extended to a
general quantizer q(x) in the subsequent section.

Definition 3: Define the following quantities:

η1 := max
{

2k + 1
2

∣∣k ∈ Z,
2k + 1

2
≤ xave

}
,

η2 := min
{

2k + 1
2

∣∣k ∈ Z,
2k + 1

2
≥ xave

} (6)

Definition 4: Let So and So(µ), µ ∈ <, be defined as
follows:

So :=
{
(α1, α2, ..., αν) ∈ S

∣∣ αi ∈ (η1, η2], ∀i ∈ ν
}

and:

So(µ) :=
{
(α1, ..., αν) ∈ S

∣∣ αi ∈ (µ− ε, µ + ε], ∀i ∈ ν
}

Definition 5: Define the distance function dε(·,So) : S →
Z as:

dε(α,So) := min
β∈So

|α− β|1
ε

, ∀α ∈ S (7)

where | · |1 denotes the L1 norm, and Z is the set of integers.
In the same way, define dε(α,So(µ)) for any real µ.

Note that dε(α,So) is equal to zero if α ∈ So.
Lemma 1: Apply Algorithm 1 to the graph G(V, E ,P)

with the initial state x[0].
• Suppose that x[k] belongs to the set So for some non-

negative integer k. The equality x[k + 1] = x[k] holds.
In other words, each element of So is an equilibrium
point of the discrete-time system.

• Assume that x[k] belongs to the set So(r + 0.5), for
some integers k and r. The state x[k + 1] is in the set
So(r +0.5) as well. In other words, this set is invariant
under the underlying algorithm.

Proof: The proof is straightforward, and is omitted for
brevity. ¥

Lemma 2: Apply Algorithm 1 to the graph G(V, E ,P)
with the initial state x[0]. Given r ∈ Z, the following
inequality holds for any nonnegative integer k:

dε(x[k + 1],So(r + 0.5)) ≤ dε(x[k],So(r + 0.5)) (8)

Proof: Assume that the edge (i, j) is chosen at the (k+1)th

time update, and that xi[k] ≤ xj [k]. There are a number of
possibilities as follows:
• xi[k]− r − 0.5 > 0 and xj [k]− r − 0.5 > 0: It can be

easily shown that:

xi[k], xj [k], xi[k + 1], xj [k + 1] > r + 0.5 (9)

The above inequalities together with the equality

xi[k] + xj [k] = xi[k + 1] + xj [k + 1] (10)

allow us to conclude that

dε(x[k+1],So(r+0.5)) = dε(x[k],So(r+0.5)). (11)

• xi[k]− r− 0.5 ≤ 0 and xj [k]− r− 0.5 ≤ 0: It is easy
to observe that:

xi[k], xj [k], xi[k + 1], xj [k + 1] ≤ r + 0.5 (12)

This leads to the equality (11) (as before).
• xi[k]−r−0.5 ≤ and xj [k]−r−0.5 > 0: Similar to the

previous cases, it can be shown that the inequality (8)
holds. ¥

Lemma 3: Given r ∈ Z, apply Algorithm 2 to the graph
G(V, E) with the initial state x[0]. At each time update k ∈
N, select an edge of the graph (in step 2 of the algorithm)
such that the function dε(x[k],So(r + 0.5)) is minimized.
There exists a natural number k0 for which either of the
following cases occurs:

i) x[k] is in the invariant set So(r + 0.5), for any k ≥ k0.
ii) x1[k]− r − 0.5, x2[k]− r − 0.5, ..., xν [k]− r− 0.5 are

either all negative or all strictly positive for all k ≥ k0.
Proof: Since dε(x[k],So(r+0.5)) is a nonnegative integer-

valued decreasing function (by Lemma 2), there exists a
number k0 with the property:

dε(x[k],So(r + 0.5)) = dε(x[k0],So(r + 0.5)), ∀k ≥ k0

(13)
If dε(x[k0],So(r + 0.5)) = 0, then case (i) explained in
the statement of the lemma definitely occurs. It is desired
to prove that if dε(x[k0],So(r + 0.5)) 6= 0, then case (ii)
takes place. To this end, notice that if xi[k]− r − 0.5, ∀i ∈
ν, are negative (strictly positive) for some proper k, so are
xi[k + 1] − r − 0.5, ∀i ∈ ν. This implies that it suffices to
prove case (ii) only for k = k0.

To prove by contradiction, assume that there exist two
integers i, j ∈ ν such that:

xi[k0] > r + 0.5, xj [k0] ≤ r + 0.5 (14)

Since the graph G is connected, the above two inequalities
yield that there are two integers µ1, µ2 ∈ ν subject to:
• (µ1, µ2) is an edge of the graph G.
• xµ1 [k0] > r + 0.5 and xµ2 [k0] ≤ r + 0.5.

If xµ1 [k0] > r + 0.5 + ε or xµ2 [k0] ≤ r + 0.5 − ε, then
following the proof of Lemma 2, one can conclude that
choosing the edge (µ1, µ2) at time k0 + 1 in step 2 of
Algorithm 2 results in the reduction of dε(x[k0],So(r+0.5)),
i.e.:

dε(x[k0 + 1],So(r + 0.5)) < dε(x[k0],So(r + 0.5)) (15)

which is impossible in light of the equality (13). Thus:

r + 0.5 < xµ1 [k] ≤ r + 0.5 + ε, (16a)
r + 0.5 ≥ xµ2 [k] > r + 0.5− ε (16b)



Consider an arbitrary vertex connected to vµ2 , and denote
it with vµ3 (if such a vertex does not exist, find a vertex
connected to vµ1 instead). It is desired to prove that:

r + 0.5− ε < xµ3 [k0] ≤ r + 0.5 + ε (17)

To this end, consider the following scenarios:
• xµ3 [k0] is greater than r + 0.5: It results from (16b)

that if the inequality xµ3 [k0] ≤ r + 0.5 + ε does not
hold, then choosing the edge (µ2, µ3) at time k0 + 1
through Algorithm 2 will reduce the storage function
dε(x[k0],So(r + 0.5)), which is impossible by (13).

• xµ3 [k0] is less than or equal to r + 0.5: If the relation
r + 0.5 − ε < xµ3 [k0] does not hold, run step 2 of
Algorithm 2 at times k0 + 1 and k0 + 2 as follows:

– At time k0 + 1, choose the edge (µ1, µ2) which
gives the updates (in light of (16)):

xµ1 [k0 + 1] = xµ1 [k0]− ε,

xµ2 [k0 + 1] = xµ2 [k0] + ε
(18)

Therefore:

dε(x[k0 +1],So(r+0.5)) = dε(x[k0],So(r+0.5))
(19)

– At time k0 + 2, choose the edge (µ2, µ3). The
equation (18) leads to:

r + 0.5 < xµ2 [k0 + 1] ≤ r + 0.5 + ε,

xµ3 [k0 + 1] = xµ3 [k0] ≤ r + 0.5− ε
(20)

Thus (after some manipulations):

dε(x[k0 + 2],So(r + 0.5)) ≤
dε(x[k0 + 1],So(r + 0.5))− 1

(21)

which is impossible by the equation (13)
This shows the validity of the inequality (17). Since
the graph is connected, there is a path from vµ2 to any
other vertex in V . One can continue the argument made
above (on the vertex vµ3 ) for the vertices of this path
successively to conclude that:

r + 0.5− ε < xi[k0] ≤ r + 0.5 + ε, ∀i ∈ ν (22)

The above inequality signifies that dε(x[k0],So(r + 0.5)) is
equal to zero, while it was earlier assumed to be nonzero.
This contradiction completes the proof. ¥

Theorem 2: Apply Algorithm 2 to the graph G(V, E) with
the initial state x[0]. Step 2 of this algorithm (i.e. selecting
an edge arbitrarily) can be taken in such a way that there
exists a positive number k1 for which one of the following
cases takes place:

i) x[k] belongs to the set So, for any k ≥ k1.
ii) x[k] belongs to the set So(η1), for any k ≥ k1.

iii) x[k] belongs to the set So(η2), for any k ≥ k1.
Proof: Define the storage functions:

V1[k] := dε(x[k],So(η1)),
V2[k] := dε(x[k],So(η2))

(23)

In the course of taking step 2 of Algorithm 2, i.e. choosing an
edge at one’s discretion, select an edge at each time update
k so that the function V1[k] is minimized (as explained in
the statement of Lemma 3). Halt this algorithm at a time k0,
where V1[k] reaches its minimum and remains constant. By
the preceding lemma, one of the following cases happens:
• x[k] is in the invariant set So(η1), for any k ≥ k0: If

this is the case, the proof is complete.
• x1[k]−η1, x2[k]−η1, ..., xν [k]−η1 are all negative, for

any k ≥ k0: Since xave is greater or equal to η1, and it
is also the average of the numbers x1[k], ..., xν [k], this
case is ruled out, unless x1[k] = x2[k] = · · · = xν [k] =
xave = η. Nevertheless, this implies that x[k] ∈ So(η1).

• x1[k] − η1, x2[k] − η1, ..., xν [k] − η1 are all strictly
positive, for any k ≥ k0: At time k = k0, ignore the
mission of minimizing V1[k], and after this time take
step 2 of Algorithm 2 so that the Lyapunov function
V2[k] is minimized at each time update. Notice that
since all entries of x[k0] are greater than η1, they can
never go beyond this limit at a future time. Using
Lemma 3, it can be argued that there exists a natural
number k1 > k0 for which one of the following cases
occurs:

– x[k] is in the invariant set So(η2), for any k ≥ k0:
If this is the case, the proof is complete.

– x1[k]−η2, x2[k]−η2, ..., xν [k]−η2 are all negative,
for any k ≥ k0: It follows from this case that x[k]
belongs to the set So, for any k ≥ k1.

– x1[k]−η2, x2[k]−η2, ..., xν [k]−η2 are all strictly
positive, for any k ≥ k0: This case can be simply
ruled out, by adopting an argument similar to the
one made above. ¥

Theorems 1 and 2 give rise to the conclusion that the
consensus is reached almost surely for the graph G(V, E ,P)
under the quantized stochastic gossip algorithm (i.e. Algo-
rithm 1), for any ε ∈ (0, 0.5].

Given a set M ∈ <ν , define the diameter of M to be
the supremum of the infinity norm of the distance between
every two points in M.

Remark 1: Definition 1 states that if the consensus is
reached at time k0, the state x[k] belongs to the box [xave −
1, xave +1]ν , for any i ∈ ν and k ≥ k0. In contrast, it can be
deduced from Theorems 1 and 2 that there exists a positive
integer k1 ≥ k0 such that x[k], ∀k ≥ k1, belongs to one of
the sets So, So(η1), or So(η2). In this regard, two points can
be made as follows:
• The diameter of the set given by Definition 1 is equal

to 2, whereas that of each of the sets So, So(η1) and
So(η2) is at most 1. This implies that a better definition
of consensus can be presented in terms of these sets.

• If x[k] in the steady state (for large enough k’s) is not
constant (almost surely) and can oscillate, it should then
belong to either of So(η1) or So(η2), which are both
of diameter 2ε (see Lemma 1). Note that the diameter
of these sets can become arbitrarily small by rendering
an appropriate ε. This implies that running the gossip



algorithm for a small ε either makes the steady state
constant or permits it to oscillate while belonging to a
set of a small diameter (2ε). In the latter case, xi[k]
can oscillate between only two numbers of difference ε
(due to the definition of So(µ), µ ∈ <).

To clarify Remark 1, consider the nominal values
xave = 10.6 and ε = 0.2. The definition of consensus
borrowed from [18] states that there exists a positive integer
k0 such that:

9.6 < x1[k], ..., xν [k] < 11.6, ∀k ≥ k0 (24)

In contrast, Theorem 2 asserts that there exists a number k1

so that:

10.4 < x1[k], ..., xν [k] ≤ 10.8, ∀k ≥ k1 (25)

or:
10.5 < x1[k], ..., xν [k] ≤ 11.5, ∀k ≥ k1 (26)

(note that case (iii) in Theorem 2 is ruled out in this example,
as the average of the entries of x[k] cannot be smaller that all
entries of x[k]). Comparing (24) with (25) and (26), one can
simply observe that a precise description of the steady state
values on the vertices of G is delineated by (25) and (26).
Besides, notice that if 9.6 < x1[k], ..., xν [k] < 11.6 for some
integer k, it may not be true that 9.6 < x1[k +1], ..., xν [k +
1] < 11.6 (because this region does not correspond to an
invariant set in general, whereas So(10.5) and So are both
invariant).

IV. GENERALIZATION TO ARBITRARY QUANTIZERS

Let q(x) : < → < be a general quantization operator char-
acterized as follows:

q(x) =
{

Li if x ∈ [Li, L̄i]
Li+1 if x ∈ (L̄i, Li+1)

∀i ∈ Z (27)

where {Li}∞−∞ is a monotonically increasing sequence of
integers representing the quantization levels, and:

L̄i :=
Li + Li+1

2
, ∀i ∈ Z (28)

The scalar quantities Li and L̄i will be referred to as level
and splitting level, respectively. The results presented in
the preceding section can be readily extended, provided
Definitions 1, 3 and 4 are expressed in the general case.
This is carried out in the following.

Revised Definition 1: Given a quantization-based protocol
acting on G(V, E), denote with x[k], k ∈ N∪{0}, the vector
of values on the vertices of G at time k, obtained using this
protocol. It is said that the (quantized) consensus is reached
for the graph G under the protocol C if for any arbitrary
initial state x[0] ∈ <ν , there exist a natural number k0 and
an integer µ such that either of the following sets of relations
holds:




∑ν
i=1 xi[k] =

∑ν
i=1 xi[0]

xj [k] ∈ [Lµ, Lµ+1]
∀k ≥ k0, ∀j ∈ ν (29)

or:



∑ν
i=1 xi[k] =

∑ν
i=1 xi[0]

xj [k] ∈ (L̄µ, L̄µ+1]
∀k ≥ k0, ∀j ∈ ν (30)

Note that the above definition presents a more compre-
hensive description of consensus, compared to Definition 1
(see the discussion given in Remark 1). Roughly speaking,
the revised version of Definition 1 states that the consensus
is reached if the numbers on the vertices of the graph even-
tually lie between two consecutive levels or two consecutive
splitting levels.

Revised Definition 3: Define η1 and η2 to be:

η1 = max
i∈Z

L̄i s.t. L̄i ≤ xave,

η2 = min
j∈Z

L̄j s.t. L̄j ≥ xave
(31)

Revised Definition 4: Let So(L̄i), i ∈ Z be defined as the
set of all ν-tuple (α1, α2, ..., αν) ∈ S such that:

αj ∈
(
L̄i − ε(Li+1 − Li), L̄i + ε(Li+1 − Li)

]
, ∀j ∈ ν

(32)
It is noteworthy that other definitions presented in the

previous section carry over to the general case, such as
the definitions of S , So and dε(·, So(µ)). Moreover, the
assumption ε ∈ (0, 0.5] remains unchanged.

One can adopt an approach similar to the one proposed
in the preceding section to prove all lemmas and theorems
(presented earlier) in the general case. This leads to the
conclusions that the consensus is reached almost surely
for the graph G(V, E ,P) under Algorithm 1, and that x[k]
belongs to one of the invariant sets So, So(η1) or So(η2),
for large enough k’s .

V. SIMULATION RESULTS

Consider a complete graph G with ν = 40 and, for
simplicity, assume that all edges possess the same weight
equal to 2

ν(ν−1) . Let the initial values sitting on the vertices
of G be uniformly distributed in the box [0, 100]ν . We wish to
observe how these values evolve under the quantized stochas-
tic gossip algorithm (i.e. Algorithm 1). For this purpose,
assume that the quantization is uniform, and that ε = 0.2.
Two sets of initial states have been randomly generated,
which are spelled out below:
• As the first trial, the initial values randomly generated

are depicted in Figure 1. Note that the x-axis of this
plot shows the index i changing from 1 to 40, and
the y-axis shows the corresponding value of xi[0].
The time k1 introduced in Theorem 2 turns out to be
equal to 770. The final values at this time are plotted
in Figure 2. Since these numbers are spread in the
interval [52.5, 53.5], the point x[k1] belongs to the set
So (see Theorem 2). This implies that the steady-state
of the vector x[k] is fixed, i.e. x[k] = x[k1], for any
k ≥ k1. The storage function dε(x[k],So) is sketched
in Figure 3 to illustrate how it attenuates to zero in
a (non-strictly) decreasing way. This is in accordance
with Lemma 2.
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Fig. 1. The initial values on the vertices of the graph G for the first trial.
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Fig. 2. The final values on the vertices of the graph G (at the time k1)
for the first trial.

• As the second trial, the initial values randomly gen-
erated are shown in Figure 4. The corresponding final
values at the time k1 = 555 are depicted in Figure 5.
This figure demonstrates that x[k1] belongs to the set
So(η1), rather than So. This confirms the results of
Theorem 2. Therefore, the steady-state of the vector
x[k] is not fixed, and this vector can oscillate. However,
xi[k], i ∈ ν, can take only two possible values with the
difference ε = 0.2, in light of the definition of So(µ).
The storage function dε(x[k],So(η1)) is plotted in Fig-
ure 6 to illustrate the convergence rate of Algorithm 1.

VI. CONCLUSIONS

This paper deals with the distributed averaging problem
over a connected weighted graph. At each time update, an
edge of the graph is to be chosen with the probability equal
to its weight, and the values on the ending vertices are to
be updated in terms of the quantized data of each other.
A quantized stochastic gossip algorithm was proposed in a
recent paper, which was shown to work in a particular case.
In this part of the current paper, it is proved that the quantized
consensus is reached in the general case using this algorithm.
The quantizer can be, for instance, constant or logarithmic.
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Fig. 3. The storage function dε(x[k],So) for the first trial.
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Fig. 4. The initial values on the vertices of the graph G for the second
trial.

Some properties of the steady-state numbers sitting on the
vertices of the graph are obtained, which elegantly describe
the steady-state behavior of the system. In the second part
of the paper, the expected value of the time at which the
consensus is reached will be lower and upper bounded in
term of the topology of the graph, particularly its weighted
Laplacian matrix.
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