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Abstract— This paper deals with the distributed averaging
problem over a connected network of agents, subject to a
quantization constraint. It is assumed that at each time update,
only a pair of agents can update their own numbers in terms
of the quantized data being exchanged. The agents are also
required to communicate with one another in a stochastic
fashion. In the first part of the paper, it was shown that
the quantized consensus is reached by means of a stochastic
gossip algorithm proposed in a recent paper, for any arbitrary
quantization. The current part of the paper considers the
expected value of the time at which the quantized consensus
is reached. This quantity (corresponding to the worst case) is
upper and lower bounded in terms of the topology of the graph,
for uniform quantization. In particular, it is shown that these
bounds are related to the principal minors of the weighted
Laplacian matrix. A convex optimization is also proposed to
determine the set of probabilities (used to pick a pair of agents)
which leads to the fast convergence of the gossip algorithm.

I. INTRODUCTION

During the past few decades, there has been a particular
interest in distributed computations, which aim to compute
some quantity over a network of processors in a decentralized
fashion [1], [2]. The distributed averaging problem, as a
particular case, is concerned with computing the average
of numbers owned by the agents of a group [3], [4]. This
problem has been investigated through the notion of consen-
sus in several papers, motivated by different applications [5],
[6], [7], [8], [9], [10]. For instance, the synchronization of
coupled oscillators, appearing in biophysics, neurobiology,
and systems biology, is studied in [5] and [6] to explore
how to reach a consensus on the frequencies of all agents.
Moreover, the problem of aligning the heading angles of a
group of mobile agents (e.g. a flock of birds) is treated in
[11]. Given a sensor network comprising a set of sensors
measuring the same quantity in a noisy environment, the
problem of consensus on state estimations is discussed in
[12]. The consensus problem for networks of dynamic agents
with fixed and switching topologies is tackled in [3], where it
is shown that the convergence rate is related to the algebraic
connectivity of the network. The work [13] elaborates on the
relationship between the amount of information exchanged
by the agents and the rate of convergence to the consensus.
A more complete survey on this topic is given in the recent
paper [4].

Consider the distributed average consensus in which the
values owned by the agents are to be averaged in a distributed
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fashion. Since it may turn out in some applications that
all agents cannot update their numbers synchronously, the
gossip algorithm has been widely exploited by researchers
to handle the averaging problem asynchronously [14], [15].
This type of algorithm selects a pair of agents at each time,
and updates their values based on some averaging policy.
The consensus problem in the context of gossip algorithm has
been thoroughly investigated in the literature [16], [17], [18],
[19]. For instance, the work [16] studies the convergence of a
general randomized gossip algorithm, and derives conditions
under which the algorithm converges. This paper also shows
that the averaging time of a gossip algorithm depends on
the second largest eigenvalue of a doubly stochastic matrix
characterizing the algorithm.

In light of communication constraints, the data being
exchanged between any pair of agents is normally to be
quantized. This has given rise to the emergence of quantized
gossip algorithms. The notion of quantized consensus is
defined in [18] for the case when quantized values (inte-
gers) are to be averaged over a connected network with
digital communication channels. This paper shows that the
quantized gossip algorithm leads to reaching the quantized
consensus. This result is extended in [19] to the case when
the quantization is uniform, and the initial numbers owned
by the agents are reals (as opposed to being integers). The
paper [19] shows that the quantized gossip algorithm works
for a particular choice of the updating parameter, although
it conjunctures that this result is true for a wide range of
updating parameters. A related paper on quantized consensus
gives a synchronous algorithm in order to reach a consensus
with arbitrary precision, at the cost of not preserving the
average of the initial numbers [20].

In this paper, a weighted connected graph is considered
together with a set of scalars sitting on its vertices. The
weight of each edge represents the probability of establishing
a communication between its corresponding vertices through
the updating procedure. It was shown in Part I of this work
that the quantized consensus is reached under the stochastic
gossip algorithm proposed in [19], for a wide range of
updating parameters and any arbitrary quantizer including
uniform and logarithmic ones [21]. The current part of the
paper is concerned with the convergence time of the gossip
algorithm. More precisely, consider the expected value of
the time at which the consensus is reached, and take its
maximum over all possible initial states belonging to a given
hypercube. Upper and lower bounds on the this quantity
are provided for a uniform quantizer, which turn out to
be related to the Laplacian of the weighted graph. Since



these bounds are both constant multiples of some expression
depending on the edge weights, the lower and upper bounds
can be simultaneously minimized in order to obtain the best
weights (resulting in a small convergence time). To do so, a
convex optimization is proposed, which can be solved by a
semidefinite program.

This paper is organized as follows. Some preliminaries
are presented in Section II, and the problem is formulated
accordingly. The main results on the convergence time are
provided in Section III. The results are illustrated in Sec-
tion IV with a numerical example. Finally, some concluding
remarks are given in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a connected weighted graph G = (V, E ,P),
where:
• V := {v1, v2, ..., vν} is the set of vertices of G;
• E is the set of edges of G;
• P := {pij}i,j is the set of weights assigned to the edges

of G.
Assume that:
•

∑
i,j∈ν pij is equal to 2, where ν := {1, 2, ..., ν}.

• pij , i, j ∈ ν, is equal to zero if (i, j) 6∈ E ; otherwise, it
is strictly positive. In particular, p11, p22, ..., pνν are all
equal to zero.

The scalar pij associated with the edge (i, j) represents the
probability of choosing the edge (i, j) when an edge of G
is to be picked at random. Suppose that a real number xi

has been assigned to the vertex vi, for any i ∈ ν. Let q(x) :
< → < be a general quantization operator characterized as
follows:

q(x) =
{

Li if x ∈ [Li, L̄i]
Li+1 if x ∈ (L̄i, Li+1)

∀i ∈ Z (1)

where {Li}∞−∞ is a monotonically increasing sequence of
integers representing the quantization levels, and:

L̄i :=
Li + Li+1

2
, ∀i ∈ Z (2)

Note that Z denotes the set of integers. In what follows, a
quantized stochastic gossip algorithm is presented [19].

Algorithm 1:
Step 1: Given a positive real ε, set k = 0. Define xi[0] := xi,
for any i ∈ ν.
Step 2: Pick an edge of G at random.
Step 3: Suppose that the ending vertices of the edge selected
in Step 2 possess the values xi[k] and xj [k]. Perform the
following updates:

xi[k + 1] = xi[k] + ε× (
q(xj [k])− q(xi[k])

)
,

xj [k + 1] = xj [k] + ε× (
q(xi[k])− q(xj [k])

)
,

xq[k + 1] = xq[k], ∀q ∈ ν\{i, j}
(3)

Step 4: Increase k by 1 and jump to Step 2.
Let the short-hand notation:

x[k] =
[

x1[k] x2[k] · · · xν [k]
]
, k ∈ Z (4)

be used hereafter.
Definition 1: Given a quantization-based protocol acting

on G(V, E), denote with x[k], k ∈ N ∪ {0}, the vector of
values on the vertices of G at time k, obtained using this
protocol. It is said that the quantized consensus is reached
for the graph G under the protocol C if for any arbitrary
initial state x[0] ∈ <ν , there exist a natural number k0 and
an integer µ such that either of the following sets of relations
holds:




∑ν
i=1 xi[k] =

∑ν
i=1 xi[0]

xj [k] ∈ [Lµ, Lµ+1]
∀k ≥ k0, ∀j ∈ ν (5)

or: 



∑ν
i=1 xi[k] =

∑ν
i=1 xi[0]

xj [k] ∈ (L̄µ, L̄µ+1]
∀k ≥ k0, ∀j ∈ ν (6)

In line with the above definition, if the protocol C is
stochastic, one would say that the quantized consensus is
reached almost surely if there exists a number k0 ∈ N, almost
surely, for which either of the relations (5) or (6) holds.
For simplicity, the short name consensus is used hereafter in
order to refer to quantized consensus. A few definitions and
notations will be introduced in the sequel.

Definition 2: Define S to be the set of all ν-tuple
(α1, α2, ..., αν) such that αi ∈ [xmin, xmax] and, in addition,
(αi − xi) is an integer multiple of ε, for any i ∈ ν, where:

xmax := max
i∈ν

dxie, xmin := min
i∈ν

bxic (7)

Definition 3: Let η1 and η2 be:

η1 = max
i∈Z

L̄i s.t. L̄i ≤ xave,

η2 = min
j∈Z

L̄j s.t. L̄j ≥ xave
(8)

where xave := x1+x2+···+xν

ν .

Definition 4: Define:

So :=
{
(α1, α2, ..., αν) ∈ S∣∣ αi ∈ (η1, η2], ∀i ∈ ν

}

Furthermore, let So(L̄i), i ∈ Z, be defined as the set of all
ν-tuple (α1, α2, ..., αν) ∈ S such that:

αj ∈
(
L̄i − ε(Li+1 − Li), L̄i + ε(Li+1 − Li)

]
, ∀j ∈ ν

(9)

Definition 5: Define the distance function dε(·,So) : S →
Z as:

dε(α,So) := min
β∈So

|α− β|1
ε

, ∀α ∈ S (10)

where | · |1 denotes the L1 norm. Define also the distance
function dε(·,So(µ)) in the same vein.

The next result was proved in Part I of the paper [21].
Theorem 1: Given ε ∈ (0, 0.5], apply Algorithm 1 to the

graph G(V, E ,P) with the initial state x[0]. There, almost
surely, exists a positive number k1 for which one of the
following cases takes place:

i) x[k] belongs to the set So, for any k ≥ k1.



ii) x[k] belongs to the set So(η1), for any k ≥ k1.
iii) x[k] belongs to the set So(η2), for any k ≥ k1.

It is noteworthy that the above theorem proves reaching the
consensus and, besides, describes the behavior of the system
in the steady state. In order to study the convergence time
of Algorithm 1, it is desired to find lower and upper bounds
on the quantity k1 introduced in Theorem 1. The objective
of this part is twofold. First, these lower and upper bounds
are to be obtained. Then, it is desired to investigate what
probability distribution P results in the fastest convergence.

III. CONVERGENCE TIME

Algorithm 1 is stochastic in the sense that an edge must
be chosen at random at each time update. The deterministic
version of this algorithm can be obtained by replacing its
step 2 with the following:
Step 2: Pick an edge of G arbitrarily (at the discretion of the
designer).

Let the deterministic version of Algorithm 1 be referred
to as “Algorithm 2”. Throughout the remainder of the paper,
assume that ε ∈ (0, 0.5], and that q(x) is a uniform quantizer,
which rounds any real x to its nearest integer (by convention,
let q(r + 0.5) = r, ∀r ∈ Z). The results can be extended to
a general quantizer in the same way.

Definition 6: Since Algorithm 1 is stochastic, the quantity
k1 is a random variable. Thus, define tc(ε) to be equal to
max E{k1}, where the maximum is taking over every initial
state x[0] in the bounding box [xmin, xmax]ν which belongs
to none of the steady-state sets So, So(η1) and So(η2) (note
that E{·} denotes the expectation operator).

The term tc(ε) indeed quantifies the expected value of the
convergence time in the worst case. This section aims to
characterize tc(ε) in terms of xmin, xmax, ε, and the topol-
ogy of the graph (together with the probabilities assigned to
its edges).

Definition 7: Given an integer r, apply Algorithm 1 (or
Algorithm 2) to the graph G(V, E ,P) with the initial state
x[0]. The process of choosing an edge at time k (k ∈ N)
in step 2 of Algorithm 1 (or Algorithm 2) is said to be a
positive action with respect to (w.r.t.) dε(·,So(r + 0.5)) if
the inequality:

dε(x[k],So(r + 0.5)) < dε(x[k − 1],So(r + 0.5)) (11)

holds; otherwise, it is called a trivial action, meaning the
following (see Lemma 2 in [21]):

dε(x[k],So(r + 0.5)) = dε(x[k − 1],So(r + 0.5)) (12)

Remark 1: Regarding Definition 7, one can observe that
there is a reduction in the Lyapunov function dε(·,So(r +
0.5)) by at least 1 during any positive action. Moreover,
having assumed that the vertices vi and vj are chosen at
time k + 1, where xi[k] > xj [k], it is straightforward to
show that a positive action occurs at this time if and only if
any of the following sets of relations holds:
• xi[k] > r + 0.5 + ε and xj [k] ≤ r + 0.5; or
• xi[k] > r + 0.5 and xj [k] ≤ r + 0.5− ε.

Definition 8: Given α ∈ <ν and r ∈ Z, define Tr,ε(α) to
be the time at which the first positive action is taken w.r.t.
dε(·,So(r + 0.5)), provided Algorithm 1 is applied to the
graph G(V, E ,P) with the initial state α. Notice that since
Algorithm 1 is stochastic, Tr,ε(α) is a random variable.

Definition 9: Given α ∈ <ν , let H denote an infinite
sequence whose elements all belong to E (i.e. H is an infinite
sequence of edges). Define Tr,ε(α

∣∣H) to be equal to the time
when the first positive action is taken w.r.t. dε(·,So(r+0.5)),
provided that Algorithm 2 is applied to the graph G(V, E)
with the initial state α, where the edge selected at time k in
step 2 of this algorithm is indeed the kth element of H, for
any k ∈ N.

Lemma 1: Given r ∈ Z and α :=
[

α1 · · · αν

]T 6∈
So(r + 0.5), the following hold for any infinite sequence of
edges H:

i) If α1 > r + 0.5 + ε, then:

Tr,ε(α
∣∣H) ≤ Tr,ε(α1 − ε, α2, ..., αν

∣∣H) (13)

ii) If α1 ≤ r + 0.5− ε, then:

Tr,ε(α
∣∣H) ≤ Tr,ε(α1 + ε, α2, ..., αν

∣∣H) (14)
Proof: Let case (i) be proved here, as the other case is

analogous. Apply Algorithm 2 to the graph G(V, E) so that
its step 2 selects edges from the sequence H in order. For
the initial states (α1, α2, ..., αν) and (α1 − ε, α2, ..., αν),
denote the resulting numbers on the vertices of G at time
k with w[k] := (w1[k], w2[k], ..., wν [k]) and w̄[k] :=
(w̄1[k], w̄2[k], ..., w̄ν [k]), respectively, for any k ∈ N ∪ {0}.
Furthermore, for notational simplicity, define:

m := Tr,ε(α1 − ε, α2, ..., αν

∣∣H) (15)

In order to proceed with the proof by contradiction, assume
that there is no positive action w.r.t. dε(·,So(r + 0.5)) at
time instants 1, 2, ...,m, by starting from the initial state α.
In other words:

dε(w[0],So(r + 0.5)) = dε(w[k],So(r + 0.5)) (16)

for any k ∈ {0, 1, 2, ...,m}. Now, one can draw a number of
conclusions as follows:

i) w1[k] is always greater than or equal to w̄1[k] for any
k satisfying the inequality 1 ≤ k ≤ m.

ii) It is an easy consequence of property (i) that wi[k] ≥
w̄i[k] for any i ∈ ν and k ∈ {1, ...,m}.

iii) The relation wi[k] = w̄i[k] holds if wi[k] ≤ r + 0.5 or
w̄i[k] ≤ r + 0.5, for any i ∈ ν and k ∈ {0, 1, ..., m}.
This result can be easily proven by induction on k,
taking property (ii) into account, and using the equal-
ity (16).

Assume that the mth element of H is the edge (i, j). With
no loss of generality, suppose that w̄i[m− 1] ≥ w̄j [m− 1].
Since a positive action occurs at time m w.r.t. dε(·,So(r +
0.5)) by starting from the initial state w̄[0], it follows from
Remark 1 that either of the cases pointed out below occurs:

a) w̄i[m− 1] > r + 0.5 + ε and w̄j [m− 1] ≤ r + 0.5; or
b) w̄i[m− 1] > r + 0.5 and w̄j [m− 1] ≤ r + 0.5− ε.



Assume that case (a) happens (the other case is similar).
Properties (ii) and (iii) mentioned above yield that:

wi[m− 1] ≥ w̄i[m− 1] > r + 0.5 + ε,

wj [m− 1] = w̄j [m− 1] ≤ r + 0.5
(17)

Since the edge (i, j) is to be chosen at time m in step 2
of Algorithm 2, the above inequalities and Remark 1 signify
that a positive action occurs at time m for the graph G(V, E)
with the initial state α = w[0]. In other words, Tr,ε(α

∣∣H)
must be equal to m, while it has been already assumed that
this quantity is greater than m. This contradiction completes
the proof. ¥

Definition 10: For any integer r and infinite sequence of
edges H, define:

ζ(ε, r,H) := max Tr,ε(β
∣∣H) (18)

where the maximum is taken over all ν-tuple β :=[
β1 · · · βν

]
with the following properties:

• β 6∈ So(r + 0.5);
• There exist i, j ∈ ν such that:

– βi > r + 0.5 + ε and βj ≤ r + 0.5; or
– βi > r + 0.5 and βj ≤ r + 0.5− ε.

Proposition 1: Given an integer r and an infinite sequence
of edges H, there exist an integer κ ∈ ν and a vector α =[

α1 · · · αν

]
subject to:

ζ(ε, r,H) = Tr,ε(α
∣∣H), (19a)

r + 0.5− ε <αi ≤ r + 0.5 + ε, ∀i ∈ ν\{κ} (19b)

In addition, ακ satisfies one of the following relations:

r + 0.5 + ε < ακ ≤ r + 0.5 + 2ε (20)

or:
r + 0.5− 2ε < ακ ≤ r + 0.5− ε (21)

Proof: The proof follows from Lemma 1. The details
are omitted here for brevity. Note that the reason why the
inequality (19) is not satisfied for every i in ν (i.e. there is
a κ for which this inequality does not hold) is that α should
not belong to So(r + 0.5), in light of Definition 10. ¥

Lemma 2: Consider a vector α =
[

α1 · · · αν

]
and

an integer r ∈ Z satisfying the relations:

r + 0.5 + ε < α1 ≤ r + 0.5 + 2ε,

r + 0.5− ε < α2 ≤ r + 0.5,

r + 0.5− ε < αi ≤ r + 0.5 + ε, ∀i ∈ ν\{1, 2}
(22)

For any infinite sequence of edges H, the inequality given
below holds:

Tr,ε(α
∣∣H) ≤ Tr,ε(α1, α2 + ε, ..., αν

∣∣H) (23)
Proof: Apply Algorithm 2 to the graph G(V, E) and select

edges in its step 2 from the sequence H successively. For
the initial states (α1, α2, ..., αν) and (α1, α2 + ε, ..., αν),
denote the resulting numbers on the vertices of G at
time k with u[k] := (u1[k], u2[k], ..., uν [k]) and ū[k] :=
(ū1[k], ū2[k], ..., ūν [k]), respectively, for any k ∈ N ∪ {0}.
Define also:

g := Tr,ε(α1, α2 + ε, ..., αν

∣∣H) (24)

For a proof by contradiction, assume that Tr,ε(α
∣∣H) > g.

Observe that:
i) Since q(γ) = r +1, for any γ ∈ (r +0.5, r +0.5+2ε],

it can be verified that:

u1[k] = ū1[k] = α1,

ui[k], ūi[k] ∈ (r + 0.5− ε, r + 0.5 + ε]
(25)

for any k ∈ {0, 1, ..., g − 1} and i ∈ ν\{1}.
ii) Using property (i) and by means of induction on k, one

can show that if ūj [k] ≤ r + 0.5 for some j ∈ ν and
k ∈ {0, 1, ..., g − 1}, then uj [k] = ūj [k].

Let the gth element of H be the edge (i, j), where i < j.
It results from the definition of g and property (i) that i = 1
and ūj [m − 1] ≤ r + 0.5 (this is the only way to generate
a positive action). Therefore, by properties (i) and (ii), one
can write:

uj [m− 1] = ūj [m− 1] ≤ r + 0.5,

u1[m− 1] > r + 0.5 + ε
(26)

As a result, Remark 1 leads to the conclusion that selecting
the edge (i, j) at time m results in a positive action for the
graph G(V, E) with the initial state α; i.e. Tr,ε(α

∣∣H) = g.
This contradicts the aforementioned assumption. ¥

Proposition 2: Consider the objects r, H and ζ(ε, r,H)
introduced in Proposition 1 and Definition 10. There exists
a vector α :=

[
α1 · · · αν

]
such that:

ζ(ε, r,H) = Tr,ε(α
∣∣H), (27a)

{α1, α2, ..., αν} = {r + 0.5− ε

2
, r + 0.5 +

ε

2
, ....

, r + 0.5 +
ε

2
, r + 0.5 + 3

ε

2
} (27b)

(note that the term r + 0.5 + ε
2 appears ν − 2 times in the

above set).
Proof: It follows from Proposition 1 and Lemma 2 that

there exist a vector α =
[

α1 · · · αν

]
and integers

µ1, µ2 ∈ ν with the properties:
• ζ(ε, r,H) = Tr,ε(α

∣∣H)
• The set of inequalities:

r + 0.5 + ε < αµ1 ≤ r + 0.5 + 2ε,

r + 0.5− ε < αµ2 ≤ r + 0.5,

r + 0.5 < αi ≤ r + 0.5 + ε, ∀i ∈ ν\{µ1, µ2}
(28)

or:

r + 0.5− 2ε < αµ1 ≤ r + 0.5− ε,

r + 0.5 < αµ2 ≤ r + 0.5 + ε,

r + 0.5− ε < αi ≤ r + 0.5, ∀i ∈ ν\{µ1, µ2}
(29)

holds.
Due to the symmetry, one can assume with no loss of
generality that the set of inequalities given in (28) holds.
It is straightforward to show (using the above properties)
that Tr,ε(α

∣∣H) is unchanged if the following replacements
are made:
• αµ1 with r + 0.5 + 3ε

2 ;
• αµ2 with r + 0.5− ε

2 ;



• αi with r + 0.5 + ε
2 , for any i ∈ ν\{µ1, µ2}.

This completes the proof. ¥
Corollary 1: Given an integer r and an infinite sequence

of edges H, there exists a vector α :=
[

α1 · · · αν

]
such that:

ζ(ε, r,H) = T0,0.5(α
∣∣H), (30a)

{α1, α2, ..., αν} = {0.25, 0.75, ...., 0.75, 1.25} (30b)

where that the number 0.75 appears ν − 2 times in the set
given above

Proof: The proof is straightforward (using Proposition 2).
The details are omitted for brevity. ¥

Corollary 1 states that the quantity ζ(ε, r,H), introduced
in Definition 10, is independent of r and ε. Instead, it is
continent upon only H and G.

Define Φ as follows:

Φ := max E{T0,0.5(α)} (31)

where the maximum is taken over all ν-tuple α =[
α1 · · · αν

]
satisfying the relation {α1, α2, ..., αν} =

{0.25, 0.75, ...., 0.75, 1.25} in which the value 0.75 appears
ν − 2 times.

Theorem 2: Given a real ε ∈ (0, 0.5], the quantity tc(ε)
can be upper and lower bounded as follows:

Φ ≤ tc(ε) ≤ ν(xmax − xmin + 2)Φ
ε

(32)
Proof: With no loss of generality, assume that:

xave − xmin ≥ xmax − xave (33)

Recall that the proof of Theorem 2 in Part I of the paper
proposes two storage functions as follows [21]:

V1[k] := dε(x[k],So(η1)),
V2[k] := dε(x[k],So(η2))

(34)

It also suggests to minimize V1[k] until it reaches a constant
level, and subsequently minimize V2[k] (in other words, the
edge being selected in step 2 of the algorithm at each update
is to be chosen in such a way that the storage function
is minimized). It follows from the inequality (33) and the
relation |xave − η1| ≤ 1 that:

V1[0] ≤
ν∑

i=1

|xi − η1|
ε

≤ ν
xave − xmin + 1

ε
(35)

At time k = k0 where the minimum of V1[k] is reached,
two possibilities can happen according to Lemma 3 in Part I
of the paper. The first one is that x[k0] ∈ So(η1), which
implies that the consensus is reached, and there is no need
to minimize V2[k] any longer. The second scenario is that
the relation xi[k0] > η1 holds for any i ∈ ν. Assume that
the latter one is the case. It is easy to verify that:

V2[k0] ≤
ν∑

i=1

|xi[k0]− η2|
ε

≤ ν
xmax − xave + 1

ε
(36)

As a result:

V1[0] + V2[k0] ≤ ν(xmax − xmin + 2)
ε

(37)

On the other hand, the aforementioned discussion indicates
that at most V1[0] + V2[k0] positive actions are required
to reach the consensus. Moreover, it can be inferred from
Corollary 1 that the expected value of the time between
two consecutive positive actions is at most equal to Φ
(until the consensus is reached). These facts along with the
inequality (37) complete the proof. ¥

Theorem 2 states that tc(ε) can be upper bounded by a
term which is proportional to the inverse of ε.

A question arises as how to compute Φ systematically.
This is addressed in the sequel. The following defini-
tions/notations will be convenient to proceed with the de-
velopment of the paper.

• Let P be the weighted Laplacian of the graph G. In other
words, P is a ν × ν matrix whose (i, j) off-diagonal
entry, i, j ∈ ν, i 6= j, is equal to −pij and its (i, i)
diagonal entry, i ∈ ν, is equal to

∑ν
k=1 pki.

• For any i ∈ ν and M ∈ <ν×ν , define M∼i to be the
matrix obtained from M by removing its ith row and
ith column.

Theorem 3: The quantity Φ can be obtained as follows:

Φ = max
i∈ν

∣∣(P∼i)−1
∣∣
∞ (38)

where | · |∞ stands for the infinity norm.
Proof: For any i, j ∈ ν, i 6= j, let βij denote a ν-

dimensional vector whose elements are all equal to 0.75,
except for the ith and jth entries which are 0.25 and 1.25,
respectively. In addition, denote the quantity E{T0,0.5(βij)}
with t̄c(i, j). We wish to contrive a recursive equation
characterizing t̄c(i, j). To this end, consider the graph G with
the initial state βij . The expected value of the time at which
the first positive action is taken (under Algorithm 1) is, by
definition, equal to t̄c(i, j). To count this number in another
way, run the algorithm one iteration. Assume that the edge eµ

is chosen in this iteration. Consider the possibilities pointed
out below:

• eµ is equal to the edge (i, k), for some k ∈ ν\{j}: In
this case, due to the equality x[0] = βij , the vector x[1]
is obtained as βkj . Hence, it is expected to take the first
positive action after t̄c(k, j) time updates (in addition
to the first time update taken at the beginning).

• eµ is equal to the edge (i, j): This means that a positive
action is already taken at the first time update.

• eµ is equal to the edge (k, l), for some k, l ∈ ν\{i}:
In this case, it is easy to show that x[1] = x[0] = βij .
This implies that it is expected to take the first positive
action after t̄c(i, j) time updates (other than the first one
already taken).

The above reasoning leads to the recursive equation:

t̄c(i, j) = 1 +
∑

k∈ν\{j}
pik t̄c(k, j)

+

(
1−

ν∑

k=1

pik

)
t̄c(i, j), ∀i ∈ ν\{j}

(39)



Stack the scalars t̄c(1, j), ..., t̄c(j − 1, j), t̄c(j + 1, j),
..., t̄c(ν, j) in a column and denote the resulting vector with
t̄c(j) ∈ <ν−1. The equation (39) can be re-arranged as:

P∼j t̄c(j) = E, ∀j ∈ ν (40)

where E ∈ <ν−1 is a vector of 1’s. It follows from the
equality |P−1

∼j E|∞ = |P−1
∼j |∞ and the above equation that:

Φ = max
i,j∈ν, i 6=j

t̄c(i, j) = max
j∈ν

|t̄c(j)|∞
= max

j∈ν
|(P∼j)−1E|∞ = max

j∈ν
|(P∼j)−1|∞

(41)

This completes the proof. ¥
The results of Theorems 2 and 3 can be combined to

explicitly bound the quantity tc(ε). This is carried out in
the sequel.

Theorem 4: The scalar tc(ε) satisfies the following in-
equalities:

1√
ν − 1

(
max
i∈ν

1
λmin {P∼i}

)
≤ tc(ε) (42)

and

tc(ε) ≤ ν
√

ν − 1(xmax − xmin + 2)
ε

(
max
i∈ν

1
λmin {P∼i}

)

(43)
where λmin(·) represents the smallest eigenvalue of a matrix.

Proof: One can write:

|(P∼j)−1|∞ ≤ √
ν − 1|(P∼j)−1|2 (44)

where | · |2 stands for the 2-norm. Since the weighted Lapla-
cian matrix P is positive semi-definite (PSD), its principal
minor P∼j is PSD too. As a result, it can be deduced from
the above inequality that:

|(P∼j)−1|∞ ≤ √
ν − 1

1
λmin{P∼j} (45)

Similarly:

|(P∼j)−1|∞ ≥ 1√
ν − 1

|(P∼j)−1|2 =
1

λmin{P∼j}
√

ν − 1
(46)

The proof is completed by the inequalities (44) and (46), on
noting Theorems 2 and 3. ¥

Remark 2: Theorem 4 states that the convergence time
tc(ε) is related to the (ν−1)th order minors of the Laplacian
of the graph (i.e. P∼i, i ∈ ν), rather than the Laplacian itself.
Let λ2(P ) denote the second smallest eigenvalue of P . Since
the graph G is connected, λ2(P ) is strictly positive. Now, the
interlacing theorem can be exploited to argue that:

0 < λmin{P∼j} ≤ λ2(P ) (47)

This means that unlike the unquantized consensus whose
convergence mainly depends on λ2(P ), a more subtle de-
pendency on λ2(P ) is governed for the quantized case (in
fact, Φ is not directly related to λ2(P )).

A. Special graphs

This subsection aims to obtain lower and upper bounds on
the quantity tc(ε) for both complete and path graphs in the
case when all edges have the same weight. In this regard,
assume that each edge is associated with the same weight p.

Corollary 2: For a complete graph G with equally
weighted edges, the following inequality holds:

ν(ν − 1)
2

≤ tc(ε) ≤ ν2(ν − 1)(xmax − xmin + 2)
2ε

(48)

Proof: The weight p for this graph is equal to 2
ν(ν−1) .

Using this fact and by means of Theorems 2 and 3, it is
straightforward to show the validity of the inequality (48).
The details are omitted here. ¥

Corollary 3: Let G be a path graph with equally weighted
edges so that vi is connected to vi+1, for any i ∈ {1, 2, ..., ν−
1} (these are the only edges of the graph). The inequality
given below holds:

ν(ν − 1)2

2
≤ tc(ε) ≤ ν2(ν − 1)2(xmax − xmin + 2)

2ε
(49)

Proof: Since the graph G has ν − 1 edges, the weight p is
equal to 1

ν−1 . On the other hand, it is easy to show that
Φ = t̄c(1, ν). This leads to the following recursive equations
(in light of (39)):

pt̄c(1, ν)− pt̄c(2, ν) = 1 (50a)
− pt̄c(i− 1, ν) + 2pt̄c(i, ν)− pt̄c(i + 1, ν) = 1 (50b)
− pt̄c(ν − 2, ν) + 2pt̄c(ν − 1, ν) = 1 (50c)

where the argument i in the equation (50b) belongs to the
set {2, 3, ..., ν−2}. Adding up these equalities results in the
relation:

pt̄c(ν − 1, ν) = ν − 1 (51)

The (backward) recursive equation (50b) can be solved using
conventional techniques to conclude that there exist two
constants a and b such that:

pt̄c(i, ν) = a + bi− i2

2
, i = ν − 1, ν − 2, ..., 1 (52)

One can employ the final conditions given by (50c) and (51)
to arrive at:

a =
ν2 − ν

2
, b =

1
2

(53)

This implies that:

Φ = t̄c(1, ν) =
ν2 − ν

2p
=

ν(ν − 1)2

2
(54)

The proof follows immediately from the above equation and
Theorem 2. ¥

B. Optimal edge weights

In this subsection, it is desired to find out what probabil-
ities the edges of G should possess so that the consensus is
reached fast. For this purpose, observe that the quantity tc(ε)
is bounded from below and above in (42) and (43). Having



fixed xmin, xmax and ε, these lower and upper bounds are
constant multiples of the term:

max
i∈ν

1
λmin {P∼i} (55)

Therefore, the lower and upper bounds provided in Theo-
rem 4 can be simultaneously minimized by merely mini-
mizing the above expression. This interesting fact leads to
finding a sub-optimal edge-selection probability distribution
by minimizing the function (55) over all possible (discrete)
probability distributions captured by P . In what follows, this
is accomplished.

Problem 1: Minimize the scalar variable −µ subject to the
constraints:

λmin{P∼i} ≥ µ, i = 1, 2, ..., ν (56)

where P is a matrix variable representing the Laplacian of
the weighted graph G. Denote the global minimizer of this
optimization with (µ∗, P ∗) (note that there are some implicit
constraints stating that the weights on the edges are positive
and sum up to 1).

Since the operator λmin(·) is concave in terms of its
symmetric argument, it is easy to show that Problem 1 is
convex. More precisely, the constraint λmin{P∼i} ≥ µ can
be expressed as P∼i ≥ µI , which is a semidefinite constraint.
Hence, the solution P ∗ can be found efficiently. On the other
hand, one can verify that:

µ∗ = max
P

min
i

λmin{P∼i} (57)

or equivalently:

1
µ∗

= min
P

max
i

1
λmin{P∼i} (58)

This implies that the solution P ∗ gives a sub-optimal edge-
selection probability distribution (resulting in the fast con-
vergence of Algorithm 1), because of minimizing the term
given in (55).

IV. NUMERICAL EXAMPLE

Consider the graph G drawn in Figure 1. The objective is to
find out what probabilities should be assigned to the edges of
G so that the consensus is reached fast under Algorithm 1. To
this end, let the convex optimization provided in Problem 1
be solved. This yields the following probability distribution:

p12 = p15 = 0.2087,

p23 = p24 = p45 = p35 = 0.1146,

p34 = 0.1241
(59)

The quantity Φ corresponding to this set of edge-selection
probabilities turns out to be equal to 14.1770. One can make
a comparison with two heuristic methods for designing the
probability set P , which are spelled out below:
• The most naive approach is to assume that the edges

of the graph are equally weighted. This leads to the
probability p = 1

7 on each edge. The associated quantity
Φ is obtained as 17.5.

Fig. 1. The graph G rendered in the numerical example

• Another technique is to devise the probability distribu-
tion P in such a way that all vertices have the same
probability of being chosen at each time update, i.e.:

p12 + p15 = p21 + p23 + p24

= p32 + p34 + p35

= p42 + p43 + p45

= p51 + p53 + p54

(60)

Note that pij = pji, ∀i, j ∈ ν. The above set of
equations has a unique symmetric solution (complying
with the symmetry of the graph G) as follows:

p12 = p15 = 0.2,

p23 = p24 = p45 = p35 = 0.1,

p34 = 0.2
(61)

The corresponding Φ is equal to 15.
Hence, the value of Φ corresponding to the sub-optimal

solution is better from the ones obtained from these two
rudimentary techniques.

Let an interesting fact about the edge selection be revealed
now. Assume that the graph G does not have the edge (1, 5)
(i.e. remove this edge). In this case, Problem 1 leads to the
following solution:

p12 = 0.3781, p23 = p24 = 0.1757,

p34 = 0, p53 = p54 = 0.1352
(62)

associated with Φ = 23.1292. Notice that p34 = 0, which
signifies that although a complete graph has the best con-
vergence, if some edges do not exist (e.g. the edge (1, 5)),
it might be better to ignore some other edges too (e.g. the
edge (3, 4)). This is fascinating as it reveals the fact that
some communications are redundant.

To compare the value obtained for Φ with other possible
values, consider the case when all edges have the same
weight. This results in the equality Φ = 36. Therefore, there
is a noticeable improvement in the value of Φ via the solution
of Problem 1.

For the purpose of simulation, the following points have
been randomly generated in the interval [0, 100]:

x1[0] = 20.1185, x2[0] = 13.6221, x3[0] = 97.8356,

x4[0] = 45.5033, x5[0] = 45.9224
(63)



The stochastic gossip algorithm was run 1000 times and the
average of the scalar k1 was calculated accordingly (note
that k1 is a random variable). This value for the probability
distribution (62) was obtained as 48.5710, while that for
the identical probability distribution (equal edge weights)
turned out to be 65.3580. This demonstrates that one could
save significantly in the convergence time if the solution of
Problem 1 is employed, which also obviates the usage of the
edge (3, 4).

A. Comparison with the work [16]

The work [16] proposes a SDP optimization in order
to obtain optimal weights for the unquantized consensus.
We wish to show that the set of optimal weights for the
unquatized consensus (using a gossip algorithm) might be by
no means a sub-optimal solution for the quantized consensus.
To this end, consider again the graph G with its edge (1, 5)
removed. Solving the optimization problem given in [16]
arrives at:

p12 = 0.3077, p23 = p24 = 0.2115,

p34 = 0, p53 = p54 = 0.1346
(64)

Note that the gossip algorithm proposed in [19] is somewhat
different from the one described here. More specifically, it
does not select an edge directly; instead, it first chooses a
vertex and then picks one of its edges. However, the corre-
sponding edge and vertex probabilities can be interpreted as
the edge probabilities given above. The quantity Φ for this
set of weights is equal to 23.8066, which is fairly close to
the sub-optimal one obtained earlier. However, the average
of k1 over 1000 runs was obtained as 91.6410, which is
much larger than 48.5710 corresponding to the sub-optimal
case, as computed above. This demonstrates that optimizing
the convergence time under an unquantized gossip algorithm
may degrade the convergence time under its corresponding
quantized algorithm.

V. CONCLUSIONS

This paper tackles the average consensus problem over
a connected weighted graph subject to a quantization con-
straint. It is assumed that each pair of vertices can be chosen
with a certain probability in order to update their numbers
in term of the quantized data being exchanged. In the first
part of the paper, it was shown that the quantized consensus
is reached under the stochastic gossip algorithm given in a
recent paper. This part of the paper deals with the time at
which the consensus is reached. Lower and upper bounds
on the expected value of this quantity in the worst case
are provided, which depend on the principal minors of the
weighted Laplacian matrix of the graph. These bounds are
explicitly computed for equally weighted complete and path
graphs. Finally, a convex optimization is provided with the
aim of finding out what weights on the edges result in the
fast convergence of the gossip algorithm.
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