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Abstract—Power system state estimation is an important prob-
lem in grid operation that has a long tradition of research
since 1960s. Due to the nonconvexity of the problem, existing
approaches based on local search methods are susceptible to
spurious local minima, which could endanger the reliability
of the system. In general, even in the absence of noise, it is
challenging to provide a practical condition under which one
can uniquely identify the global solution due to its NP-hardness.
In this study, we propose a linear basis of representation that
succinctly captures the topology of the network and enables
an efficient two-stage estimation method in case the amount
of measured data is not too low. Based on this framework,
we propose an identifiability condition that numerically depicts
the boundary where one can warrant efficient recovery of the
unique global minimum. Furthermore, we develop a robustness
metric called “mutual incoherence,” which underpins theoretical
analysis of global recovery condition and statistical error bounds
in the presence of both dense noise and bad data. The method
demonstrates superior performance over existing methods in
terms of both estimation accuracy and bad data robustness in
an array of benchmark systems. Above all, it is scalable to large
systems with more than 13,000 buses and can achieve accurate
estimation within a minute.

Index Terms—Power system state estimation, statistical anal-
ysis, robust learning, smart grid

I. INTRODUCTION

Power system state estimation (SE) is conducted on a
regular basis (e.g., every few minutes) to monitor the state of
the grid by collecting and filtering a wealth of sensor data from
transmission and distribution infrastructures [1], [2]. The state
estimate presents system operators with essential information
about the real-time operating status to improve situational
awareness, make economic decisions, and take contingency
actions in response to potential threats that could engender
the grid reliability [3].

Due to the nonlinearity of the alternating-current (AC) grid
physics, solving the set of power flow equations that arise
from sensor measurements is known to be NP-hard for both
transmission and distribution networks [4], [5]. As a result,
there is a long tradition of studying this problem [2], [6]–
[16]. At a high level, these methods are evaluated against
multiple key criteria, including (i) accuracy (e.g., lineariza-
tion/approximation of the nonlinear law of physics and its side
effect on losing important information), (ii) robustness (e.g.,
to random/adversarial bad data, model mismatch, topological
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errors), and (iii) scalability (i.e., computational/memory re-
quirements to solve for large-scale systems). We provide a
summary of the existing methods below, and refer the reader
to [17] and [15] for a more comprehensive review.

A. Background and related work

The current practice in the power industry relies on a set
of linearization and/or Newton’s methods that are originally
developed in 1960s [2], [6], [7]. The Newton’s method has
been employed to solve the nonlinear least square (NLS)
SE and has quadratic convergence whenever the initial point
is sufficiently close to the true solution [6]. However, the
estimator is prone to outliers and sparse noise/errors, which
can arise from sensor faults, topological errors [18]–[21], or
adversarial attack [22]–[24]. To deal with large and sparse
noise, one common approach is to perform bad data detection
(BDD) on residual errors [25], [26]. This method relies on the
statistical assumptions of the random errors (e.g., mean-zero
and independent Gaussian distributions) and is only effective
when the estimation from the Newton algorithm is close
enough to the ground truth [2]. Alternatively, by redesigning
the cost functions, robust estimators such as the least-absolute
value (LAV) (a.k.a., `1 loss), the least median of squares, or
Huber’s estimator have been employed [2], [8], [9], [27]–
[30]. A major drawback of the above local search methods
is the vulnerability to spurious local minima, which are those
points that satisfy first- and second-order optimality conditions
but are not the global minimum [30]–[32]. This is a major
issue that can potentially cause a tremendous danger to the
operation of the system, and it is difficult to distinguish a
spurious local minimum that is consistent with data from the
ground truth. Even though some recent works have shed light
on the possibility of the non-existence of local minima in
certain scenarios [33], the conditions are difficult to verify
for SE [30].

Apart from local search algorithms mentioned above, sev-
eral advanced optimization techniques have been proposed,
such as particle swarm optimization [34], holomorphic embed-
ding load flow method [35], homotopy continuation methods
[36], feasible point pursuit [37], composite optimization [38],
iterative mixed objective convex program [39], and algorithms
for solving variational inequalities involving monotone oper-
ators [31]. A comprehensive review of these methods can be
found in [15], [17].

The technique of convexification and semidefinite program-
ming (SDP) relaxation is a powerful tool to tackle polynomial
optimization, which arise from several areas such as graph
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theory, signal processing, and power systems [40]–[45]. Re-
cently, the SDP relaxation technique has been applied to SE
following its success for the optimal power flow problem [46],
which demonstrate satisfactory numerical performance even
in the presence of topological errors and bad data [11], [13],
[16], [20], [47]. Also, [24] analyzes the vulnerabilities of AC
SE against potential cyber attacks. While SDP relaxation is
a promising approach with numerical success, this method
requires that the solution to be rank-1 to recover the true
state. Since the SDP relaxation is not always exact, one
needs to add an extra rank penalty to the objective function
(e.g., nuclear norm [11] or custom-designed norm [13], [16]),
which would make the solution near-global optimal. The
existing theoretical analyses of the SDP technique have not
considered the bad data detection [13], [16]. Furthermore, the
positive semidefinite constraint of the SDP technique limits the
applicability of this method to large-scale problems, since the
most common conic numerical algorithms scale on the order
of O(n6), where n is the number of variables.

B. Contributions

We propose a method to solve large-scale AC SE with linear
programming (LP) or quadratic programming (QP) that finds
the correct state and is robust to sparse bad data, provided that
the amount of measured data is relatively high. A new basis
of representation is proposed, which is related to, but different
from, the two dominant complex number representations used
in power flow equations (i.e., polar coordinates and rectangular
representation). This basis fully captures the properties of the
power grid topology, which leads to efficient SE algorithms.
Furthermore, we develop a SE identifiability condition to
guarantee that no spurious local minimum exists in SE. We
also perform theoretical analysis on the recovery condition of
the true state in the presence of sparse bad data with statistical
bounds on the estimation error.

The paper is organized as follows. The linear basis of
representation is introduced in Sec. II-B, together with the
measurement models and some key definitions to facilitate
theoretical analysis. The two-stage estimator is introduced in
Sec. III, whose performance is analyzed in Sec. IV. Sec. V
includes numerical evaluations of the proposed methods on
benchmark systems. Conclusion is drawn in Sec. VI. All
proofs have been delegated to the appendix for the interested
readers without interrupting the flow of the presentation.

II. POWER SYSTEM AC-MODEL

A. Notations

Vectors are shown by bold letters, and matrices are shown
by bold and capital letters. Let xi denote the i-th element of
vector x. We use R and C to show the sets of real and complex
numbers. The set of indices {1, 2, ...,m} is denoted by [m].
The cardinality |J | of a set J is the number of elements in
the set. The support supp(x) of a vector x is the set of indices
of the nonzero entries of x. For a set J ⊂ [m], we use J c =
[m] \ J to denote its complement. We use AJ to denote the
submatrix formed by the rows ofA indexed by J . The symbol
(·)> represents the transpose operator. We use <(·), =(·) and

Tr (·) to denote the real part, imaginary part and trace of a
scalar/matrix. The imaginary unit is denoted as i. The notations
∠x and |x| indicate the angle and magnitude of a complex
scalar. For a convex function g(x), we use ∇g(x) to denote its
subgradient. The inner product between two vectors is denoted
by 〈·, ·〉. The notations ‖x‖1, ‖x‖2 and ‖x‖∞ represent the
1-norm, 2-form and ∞-norm of x. We use E to denote the
expectation operator of a random variable.

B. Power system modeling

We model the electric grid as a graph G := {N ,L}, where
N := [nb] and L := [nl] represent its set of buses and
branches. Each branch ` ∈ L that connects bus k and bus j is
characterized by the branch admittance y` = g` + ib` and the
shunt admittance ysh

` = gsh
` + ibsh

` , where g` (resp., gsh
` ) and b`

(resp., bsh
` ) denote the (shunt) conductance and susceptance,

respectively. Since gsh
` � bsh

` in practice, we set it to zero
in the subsequent description. In addition, to avoid duplicate
definitions, each line ` := (k, j) is assigned with a unique
direction from bus k (i.e., from end, given by f(`) := k) to
bus j (i.e., to end, given by t(`) := j). We also use ` : {k, j}
to denote a line ` with the direction of either (k, j) or (j, k).

The power system state is described by the complex voltage
vector v =

[
v1, ..., vnb

]> ∈ Cnb , where vk ∈ C is the complex
voltage at bus k ∈ N with magnitude |vk| and phase θk :=
∠vk. Given the complex voltages, by Ohm’s law, the complex
current injected into line ` : {k, j} at bus k is given by:

ikj = y`(vk − vj) +
i

2
bsh
` vk.

Defining θkj := θk − θj , one can write the power flow from
bus k to bus j as

p
(`)
kj = |vk|2g` − |vk||vj |(g` cos θkj − b` sin θkj),

q
(`)
kj = −|vk|2(b` + 1

2b
sh
` ) + |vk||vj |(b` cos θkj − g` sin θkj),

and active (reactive) power injections at bust k,

pk =
∑
`:{k,j}

p
(`)
kj , qk =

∑
`:{k,j}

q
(`)
kj . (1)

The above formulas are based on polar coordinates of com-
plex voltages, where measurements are nonlinear functions of
voltage magnitudes and phases. Another popular representa-
tion uses rectangular coordinates of complex numbers, where
measurements are expressed as quadratic functions of the real
and imaginary parts of voltages (see [48, Chap. 1] for more
details).

C. Linear basis of representation

In this paper, we introduce a new basis of representation,
where measurements can be expressed as linear combinations
of the quantities derived from bus voltages. Specifically, for a
given system G, we introduce two groups of variables:

1) voltage magnitude square, xmg
k := |vk|2, for each bus

k ∈ N , and
2) real and imaginary parts of complex products, denoted

as xre
` := <(viv

∗
j ) and xim

` := =(viv
∗
j ), respectively, for
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each line ` = (i, j). Note that there is only one set of
variables xre

` and xim
` for each line.

Using this representation, we can re-derive various types of
power and voltage measurements (without noise) as follows:

• Voltage magnitude square: The voltage magnitude square
at bus k ∈ N is simply xmg

k by definition.
• Branch power flows: For each line ` = (i, j), the real

and reactive power flows from bus i to bus j and in the
reverse direction are given by:

p
(`)
ij = g`x

mg
i − g`x

re
` − b`xim

`

q
(`)
ij = −(b` + 1

2b
sh
` )xmg

i + b`x
re
` − g`xim

`

p
(`)
ji = g`x

mg
j − g`x

re
` + b`x

im
`

q
(`)
ji = −(b` + 1

2b
sh
` )xmg

j + b`x
re
` + g`x

im
`

• Nodal power injection: The power injection at bus node
k consists of real and reactive powers, where:

pk =
∑
k∈`

g`x
mg
k −

∑
k∈`

g`x
re
` −

( ∑
f(`)=k

b` −
∑
t(`)=k

b`

)
xim
`

qk = −

(∑
k∈`

b` + 1
2b

sh
`

)
xmg
k +

∑
k∈`

b`x
re
` −( ∑

f(`)=k

g` −
∑
t(`)=k

g`

)
xim
` ,

where
∑
k∈` is the sum over all lines ` ∈ L that are

connected to k,
∑
f(`)=k is the sum over all lines ` where

f(`) = k, and similarly,
∑
t(`)=k is the sum over all lines

` where t(`) = k. Equivalently, we can use (1) to combine
the branch power flows defined above.

Thus, each customary measurement in power systems that
belongs to one of the above measurement types can be
represented by a linear function1:

mi(x) = a>i x\, (2)

where ai ∈ Rnx is the vector for the i-th noiseless mea-
surement and x\ = ({xmg

k }k∈N , {xim
` , x

im
` }`∈L) ∈ Rnx is the

regression vector. By collecting all the sensor measurements
in a vector m ∈ Rnm , we have

m = Ax\, (3)

where A ∈ Rnm×nx is the sensing matrix with rows a>i for
i ∈ [nm]. Fig. 1 illustrates the sensing equation (3) for a simple
3-bus system.

It is worth mentioning that the linear basis introduced above
is different from DC modeling of measurements, because the
expression is exact for the AC model. This parametrization
is inspired by the semidefinite relaxation approach for power
system optimization [11], [13], [16], [20], [47], and it effi-
ciently exploits the sparsity of the network (more on this in
Sec. IV-A).

1It is straightforward to include linear PMU measurements in our analysis as
well using the relation tan θij = xim

` /x
re
` for each line ` = (i, j), assuming

we have a pair of PMUs on each end of a branch.

Fig. 1: Illustration of the sensing equation (3) for a 3-bus sys-
tem. A selected set of measurements are considered, namely
nodal injections at buses i and j, voltage magnitude square at
bus j, and branch power flows along line `1 = (i, j). Note
that one can choose the set of regression variables based on
the availability of measurements, as long as each measurement
can be fully represented by the chosen set of variables. For
instance, we can omit the variables xre

`3
:= <(viv

∗
k) and

xim
`3

:= =(viv
∗
k) by simultaneously excluding measurements

p
(`3)
ij , q

(`3)
ij , p

(`3)
ji , q

(`3)
ji and pi, qi, pk, qk, since they all rely on

the omitted variables.

D. Measurement model

To perform SE, the supervisory control and data acquisition
(SCADA) system collects measurements on power flows and
complex voltages at key locations instrumented with sensors.
This process is subject to both ubiquitous sensor noise and ran-
domly occurring sensor faults. We consider the measurement
model as follows:

y = Ax\ + w\ + b\, (4)

where A ∈ Rnm×nx and x\ ∈ Rnx are the sensing matrix
and the true regression vector in (3), w\ ∈ Rnm denotes
random noise, and b\ ∈ Rm is the bad data error that
accounts for sensor failures or adversarial attacks [24]. Let
J := supp(b) ⊂ [nm] denote the support of the bad data
b. We introduce the following properties to characterize the
sensing matrix A.

Definition 1 (Lower eigenvalue). LetQJ :=
[
A I>J

]
, where

IJ consists of the J rows of the identity matrix I ∈ Rnm×nm ,
and let AJ c be the submatrix of A with rows indexed by J c.
Then, the lower eigenvalue Cmin(J ) for a given corruption
support J is defined as the lower bound:

min
{
λmin

(
Q>JQJ

)
, λmin

(
A>J cAJ c

)}
, (5)

where λmin(X) denotes the smallest eigenvalue of X .

The value Cmin(J ) characterizes the influence of bad data
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on the identifiability of x\. If Cmin(J ) is strictly positive,
and one can accurately detect the support of bad data (a.k.a.,
support recovery), then it would be possible to obtain a good
estimation of x\ with only the clean data in J c. Typically,
the bad data due to sensor faults are randomly located, so if
only a small amount of sensors are grossly corrupted (i.e.,
|J | < |J c|), then the first term in (5) will be smaller than
the second term. As we will see in Sec. IV, the first term is
relevant for the case with dense noise w\.

The next property turns out to be critical for BDD.

Definition 2 (Mutual incoherence). Given a set J ⊂ [m] and
its complement J c := [m] \ J , let the pseudoinverse of AJ c
be denoted as A+

J c = (A>J cAJ c)
−1A>J c . Then, the mutual

incoherence parameter ρ(J ) is defined to be:

ρ(J ) = ‖A>+
J c A

>
J ‖∞,

where ‖ · ‖∞ denotes the matrix infinity norm (i.e., the
maximum absolute column sum of the matrix).

The name “mutual incoherence” originates from the com-
pressed sensing literature [49]–[52]. However, our definition
is different because it measures the alignment of the sensing
directions of the corrupted measurements (i.e., AJ ) with those
of the clean data (i.e., AJ c ). If these directions are misaligned
(a.k.a., incoherent), then the value ρ(J ) is low and therefore
it is likely to uncover the support of bad data. In general,
the smaller the number of bad data measurement is, the more
likely that ρ(J ) is small. As our analysis will show, if this
value is strictly less than 1, then we can provably recover the
support of the bad data.

Because the sensor data are of different types and scales,
we make a normalization assumption.

Definition 3 (Measurement normalization). Each row of A is
normalized as

‖ai‖22 = 1, ∀i ∈ [nm] (6)

where ai is the i-th row of A.

This condition is straightforward to implement in practice,
since one can arbitrarily rescale the given coefficients of each
measurement equation. This is also known as precondition-
ing, which assists with both the numerical stability and the
statistical performance of regression.

III. TWO-STAGE STATE ESTIMATION

This section describes the proposed two-stage state esti-
mation method, where both stages are linear or quadratic
regression problems.

A. Stage 1: Estimation of x\
In the first stage, the goal is to estimate x\ from a set of

noisy and corrupted measurements y. We consider two cases
separately. In the first case, the dense noise is negligible, i.e.,
w\ = 0, and we only need to consider the sparse measurement
corruption b. Under some conditions to be specified in Sec. IV,
one can exactly recover the underlying vector x\.

Case 1: Sparse corruption but no dense noise (i.e., w = 0)

In this case, the measurements are given by y = Ax\ +b\.
To estimate x\, we solve the following program:

min
x∈Rnx ,b∈Rnm

‖b‖1, subject to Ax+ b = y. (S1-L1)

Briefly, if the lower eigenvalue is bounded away from 0 (i.e.,
Cmin(J ) > 0) and the mutual incoherence is less than 1 (i.e.,
ρ(J ) < 1), then we can faithfully recover x\ and b\ from the
above program.

Case 2: Sparse corruption and dense noise

In this case, the dense noise cannot be ignored, and the
measurements are given by (4). We perform the estimation by
solving the following LASSO-style optimization:

min
b∈Rnm ,x∈Rnx

1
2nm
‖y −Ax− b‖22 + λ‖b‖1, (S1-LASSO)

where λ > 0 is the regularization coefficient. Due to the
existence of dense noise, it is no longer possible to exactly
recover the true x\; however, if the magnitudes of the dense
noise are small, then we can still have good statistical bounds
on the estimation error.

To detect and remove bad data, we first estimate the
linear basis by solving either (S1-L1) or (S1-LASSO). This
automatically produces a bad data vector estimation b. If the
value of any entry of b is larger than a threshold, namely
0.1 in the experiments, then we classify the corresponding
measurement as “bad data.” If there is a topology error, then
the bad data tend to be localized on a line or a bus. We
can observe the topological distribution of bad data vector to
determine if there are such occurrences.

B. Stage 2: Recovery of v

The goal of the second stage is to recover the underlying
system voltage v from the estimation x̂ from stage 1. First,
we transform x̂ into estimations of voltage magnitudes and
phase differences:
• The voltage magnitude at each bus k ∈ N is estimated

as |v̂k| =
√
x̂mg
k ;

• The phase difference along each line ` = (i, j) is
estimated as θ̂ij = arctan x̂im

` /x̂
re
` .

To obtain the phase estimation at each bus, we solve the least-
squares problem

θ̂ = arg min
θ∈Rnb

∑
`=(i,j)

(θi − θj − θ̂ij)2, (S2-θ)

which has a closed-form solution. To delve into this, let θ∆

be a collection of θ̂ij , and L ∈ Rn`×nb be a sparse matrix
with L(`, i) := 1 and L(`, j) := −1 for each line ` = (i, j)
and zero elsewhere. Then, the solution for (S2-θ) is given by:

θ̂ = (L>L)−1L>θ∆. (7)

Finally, we can reconstruct v̂ by definition:

v̂k = |v̂k|eiθ̂k , k ∈ N . (8)
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If the regression vector from stage 1 is exact, i.e., x̂ = x\,
then we can accurately recover the system state v̂ = v. Even
if the x̂ is not exact, the second stage estimator (S2-θ) has
strong properties to control the estimation error and ensure
that the errors in θ̂ij will not propagate along the branches.

IV. THEORETICAL ANALYSIS

This section presents several theoretical analysis for the pro-
posed framework. First, a condition for AC SE identifiability
is presented. Then, we discuss the conditions under which
accurate recovery of the true state is guaranteed. Furthermore,
we present a novel statistical analysis of the recovery condition
using concentration bounds.

A. Identifiability condition

Due to the nonconvexity of NLS, the existence of spurious
local minima in SE is well-recognized, which makes it difficult
to analyze whether the true state can be uniquely identified
based on a given set of clean measurements (i.e., w = b = 0).
Because SE can be formulated as a quadratic sensing problem,
the results from the low-rank compressed sensing community
seem to be directly applicable, which rely on a condition
called restricted isometry property (RIP) (e.g., see [33], [53],
[54]). The main result from this line of research indicate
that if RIP of the sensing system is small enough, then
every local minimum is also a global minimum [33], [54].
However, numerical results indicate that the condition is often
too stringent to be satisfied for SE. It is also possible to
characterize an “essentially strongly convex region” around
the true solution, where any initial point converges to the true
solution by local search [32], or to delineate a recovery region
where the rank penalty leads to exact rank-1 solution [13],
[16]. However, they all depend on the location of the true
solution and the condition is hard to check numerically. The
following theorem provides a condition similar to the DC-
approximation results but for the AC SE. Without loss of
generality, assume that the power network G is connected.

Theorem 4. In the absence of noise (i.e., w = b = 0), one
can uniquely identify the true state of the power grid if there
exists a spanning tree Tspan such that the set of measurements
on the spanning tree (not including nodal injections) forms a
matrix Aspan that has full column rank (i.e., the null space of
Aspan is zero).

We do not include nodal injections in order to avoid dealing
with variables on lines that do not have any measurements. For
a given set of clean measurements, if the set satisfies the above
identifiability condition, then there is one and only one global
optimal for the Stage 1 estimator. Furthermore, this global
optimal can be used in Stage 2 to recover the true state of the
system.

Theorem 4 is inspired by the literature on false data injection
attacks (FDIA) [22], [24], but the main difference is that we
work through a completely different basis of variables. In
FDIA, usually one works with the complex voltage directly.
In that case, it is cumbersome to derive a necessary/sufficient
condition for identifiability, because it is often algorithm
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Fig. 2: Network topology of the IEEE 14 bus system. A suffi-
cient condition for identifiability is the existence of a spanning
tree Tspan (shown on the right) where the measurements form
a nonsingular sensing matrix Aspan.

TABLE I: Empirical evaluation of the identifiability con-
dition (Y/N) in Theorem 4. Measurement sets include:
M1: {|vk|}k∈N and {p(`)

ij , q
(`)
ij }`∈Tspan ; M2: {|vk|}k∈N and

{p(`)
ij , p

(`)
ji }`∈Tspan ; M3: {|vk|}k∈N and {q(`)

ij , q
(`)
ji }`∈Tspan ;

M4: {p(`)
ij , p

(`)
ji , q

(`)
ij }`∈Tspan ; M5: {p(`)

ij , q
(`)
ji , q

(`)
ij }`∈Tspan . Note

that the number of measurements is bounded by 3× nb.

M1 M2 M3 M4 M5

30 Bus Y N N N Y

57 Bus Y N N N Y

118 Bus Y N N N Y

300 Bus Y N N N Y

1354 Bus Y N N N Y

2848 Bus Y N N N Y

dependent. In contrast, due to the proposed linear basis, it
is possible to provide a numerically-verifiable condition for
checking whether the underlying set of clean measurements
are enough to identify the actual state of the system. A
spanning tree of a graph can be found in linear time by
either depth-first search or breadth-first search. For instance,
Fig. 2 illustrates a spanning tree of the IEEE 14 bus system.
Moreover, it is a strong result in the sense that it does
not depend on the numerical value of the true state (i.e.,
universally applicable).

Note that “identifiability” is a stronger condition than “ob-
servability.” The latter is usually based on DC-approximation
(see [55] and [2, Chap. 4]), where a system is observable as
long as the measurement Jacobian is nonsingular. However, for
AC SE, “observability” implies the existence of a method (with
potentially exponential-time complexity) to infer the state
uniquely, but polynomial-time methods (such as local search)
may have a number of spurious local minima [13], [24]);
however, “identifiability” indicates that the given method is
guaranteed to efficiently recover the unique system state.
In other words, “identifiability” is a sufficient condition for
“observability.”
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Remark 5. In general, there are nb− 1 edges for a spanning
tree with nb nodes; hence, by the construction of the linear
representation in Sec. II-B, there are in total 3×nb−2 number
of variables on the spanning tree. Therefore, as long as there
are at least 3×nb independent measurements of branch flows
or voltage magnitudes, we can achieve identifiability. This
is empirically evaluated for several IEEE standard systems
in Table I. It is well known that the traditional setting of
power flow analysis with 2×nb measurements may have many
spurious local minima [14], [30], [32]. However, it follows
from the proposed linear basis that the network becomes
identifiable with a limited but right set of measurements (e.g.,
M1 and M5 in Table I).

Remark 6 (Significance of Theorem 4). Local minima may
not be a serious concern in normal situations where the state
does not change rapidly and is within a normal operation
region. However, the problem becomes crucial during adverse
conditions where some states fall out of the normal operation
region and need to be identified in real-time. In this case, if
the initial point used by a local search algorithm is not close
enough to the actual state, then the algorithm could arrive at
a point that is a local minimum with no physical meaning.

Mathematically speaking, SE can be regarded as an overde-
termined power flow (PF) in the noiseless case. It is known
that PF can have an exponential number of solutions for highly
meshed networks [4], [14]. So, the SE in the noiseless case
can have any number of solutions from 1 to a very large
number. First, it is not known when the number of solutions
is unique and that depends on how overdetermined the SE
is. Second, although there was not much known about local
solutions of optimal power flow (OPF) till 2009, there have
been a lot of studies in the past 10 years showing how non-
convex the problem is. The computational complexity of SE
is an overlooked problem. The complexity of OPF is due
to the nonlinearity of PF, and since PF is integral to SE,
it could be highly nonconvex. Recent papers show that the
problem could have many spurious solutions [30]. SE is a
special case of the matrix sensing problem and the machine
learning community has shown that the problem could be of
high computational complexity with spurious solutions unless
strong conditions are satisfied [33], [53], [54]. The focus
of the power community has been mostly on how to treat
noise and corrupted data in SE rather than dealing with
its underlying non-convexity. Since the industry mostly uses
DC models and various approximations for SE, they have
not directly dealt with the complexity of the problem. Power
community has also looked at SE/PF using nonlinear models
and their concern has been on the convergence of local search
algorithms. Since convergence could be to a wrong solution,
the focus of the current work is to first understand when such
wrong solutions never exist and second design an algorithm
to find the correct solution.

B. Global recovery conditions and error bounds

Despite the simplicity of the identifiability condition, real-
world measurements are often subject to random sensor noise
and sparse bad data whose support is often unknown. Thus,

it is important to examine under what conditions the true
state can be recovered (either exactly when the dense noise
is negligible, or accurately enough for the case with dense
noise).

Theorem 7. Consider the measurement equation y = Ax\ +
b\, where supp(b\) = J . Assume that the measurement matrix
A satisfies the following conditions: (a) the lower eigenvalue
is positive, i.e., Cmin(J ) > 0; (b) the mutual incoherence
condition ρ(J ) < 1 is satisfied. Then, the unique solution
to (S1-L1), denoted as (x̂, b̂), is exact and recovers the true
state (i.e., x̂ = x\ and b̂ = b\).

Theorem 8. Consider the measurement equation y = Ax\ +
w\+b\, where supp(b\) = J and w\ is a random vector with
zero mean and subgaussian parameter σ. Suppose that the
rows of A are normalized, and that the measurement matrix A
satisfies the following conditions: (a) the lower eigenvalue is
positive, (b) there exists a constant γ > 0 such that the mutual
incoherence condition ρ(J ) = 1 − γ. Let the regularization
parameter λ be chosen such that

λ >
2

nmγ

√
2σ2 log nm. (9)

Then, the following properties hold for the solution to
(S1-LASSO), denoted as (x̂, b̂):

1) (No false inclusion) The solution (x̂, b̂) has no false
bad data inclusion (i.e., supp(b̂) ⊂ supp(b\)) with
probability greater than 1− c0

nm
, for some constant c0 > 0.

2) (Large bad data detection) Let

g(λ) = nmλ

(
1

2
√
Cmin(J )

+ ‖Ib(Q>JQJ )−1I>b ‖∞

)
be a threshold value. Then, all bad data measurements
with magnitude greater than g(λ) will be detected (i.e.,
if |bi\| > g(λm), then |b̂i| > 0) with probability greater
than 1− c1

m for some constant c1 > 0.
3) (Bounded error) The estimator error is bounded by

‖x\ − x̂‖2 ≤

ω

√
nm + |J |
Cmin

+ nmλ‖Ix(Q>JQJ )−1I>b ‖∞,2

with probability greater than 1 − exp
(
− c1ω

2

σ4

)
, where

‖ · ‖∞,2 denotes `∞–`2 induced norm.

Despite the difference in measurement assumptions (i.e.,
existence of dense noise w) and estimation algorithms (i.e.,
(S1-L1) or (S1-LASSO)), it is remarkable that the global
recovery conditions in Theorems 7 and 8 are coincident.
In the case of negligible dense noise, then a strong global
recovery is achieved, that is, both the true state and the
bad data are detected. With the presence of dense noise, it
is no longer possible to achieve exact recovery; however,
Theorem 8 indicates that with a proper selection of the penalty
coefficient λ, one can avoid false detection of bad data (part
1), detect bad data with magnitudes greater than a threshold
(part 2), and achieve state estimation within bounded error
margin. Furthermore, both the bad data threshold and the error
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bound decrease with stronger mutual incoherence condition
and lower-eigenvalue condition.

The above analysis for (S1-LASSO) can be adapted to the
case without dense noise, giving rise to the following corollary.

Corollary 9. Consider the measurement equation y = Ax\+
b\, where b\ ∈ Rm has support J . Suppose that the rows
of A are normalized, and the regularization parameter λ is
chosen to be positive, i.e., λ > 0. Assume that A satisfies the
following conditions: (a) the lower eigenvalue is positive, (b)
the mutual incoherence condition ρ(J ) < 1 is satisfied. Then,
the following properties hold for the solution to (S1-LASSO),
denoted as (x̂, b̂):

1) (No false inclusion) The solution (x̂, b̂) has no bad data
false inclusion (i.e., supp(b̂) ⊂ J ).

2) (Large bad data detection) Let g(λ) =
nmλ‖Ib(Q>JQJ )−1I>b ‖∞ be a threshold value.
Then, all bad data measurements with magnitude greater
than g(λ) will be detected (i.e., if |bi\| > g(λ), then
|b̂i| > 0).

3) (Bounded error) The estimator error is bounded by

‖x\ − x̂‖2 ≤ nmλ‖Ix(Q>JQJ )−1I>b ‖∞,2.

To understand the equivalence between Corollary 9 and
Theorem 7, note that one can choose λ to be arbitrary close to
0 so the detection threshold and error bounds also approach 0.
The proof of Theorem 8 is based on the primal-dual witness
technique popularized by [52]. However, the key difference is
that the existing literature in statistical learning only focuses on
sparse signal recovery [49]–[52], while the present study needs
to recover both the sparse signal (i.e., bad data) and the dense
signal (i.e., regressor), which is technically more challenging
to prove. Indeed, related works on this topic, such as robust
principle component analysis [56] and dense error correction
[57], employ different proof techniques than the present study.

In what follows, we will discuss the influence of the possible
error in stage–1 estimation on the outcome of the second stage.
Let the estimations of xre

` and xim
` over a line ` ∈ L be given

by:

x̂re
` = xre

` + ∆xre
` and x̂im

` = xim
` + ∆xim

` ,

where xre
` and xim

` are the true values, and ∆xre
` and ∆xim

` are
the estimation errors from stage 1. We provide a bound on the
phase estimation error for each bus k ∈ N .

Proposition 10. The estimation error of the phase θk is
bounded by the k-th component of the vector∣∣∣(L>L)−1L>e

∣∣∣ ,
where e ∈ Rnl is a vector with the elements e` =
xre
`∆xim

` −x
im
` ∆xre

`

xre
` x̂

re
`

, and L is the matrix described in Sec. III-B.

To understand how the results of this section can guarantee
the accurate recovery of the system state, we consider three
different cases. (1) If there is no dense error or sparse bad
data and the identifiability condition in Theorem 4 is satisfied,
then it is guaranteed that there is a one-to-one correspondence
between the proposed basis and the underlying voltage phasor.

(2) If there is no dense error but only sparse bad data, under
the mutual incoherence condition in Theorems 7 and 8, it is
guaranteed that the proposed basis can be uniquely recovered
and it corresponds to the underlying voltage phasor. (3) In the
case with dense error, since it is theoretically impossible to
exactly recover the underlying voltage, our goal is to obtain
an estimate of the state that is as close to the ground truth
as possible. In summary, the estimate is exactly equal to the
actual state of the system in Cases 1 and 2, whereas there
is a nonzero estimation error in Case 3 that is bounded in
Proposition 10. It will be empirically shown that the proposed
basis significantly outperforms the polar/rectangular basis by
bypassing the non-convexity of the problem and finding a
provably correct solution.

Due to the centrality of the mutual incoherence condition
throughout the theoretical analysis, we provide an analysis on
the likelihood of global recovery condition satisfaction using
arguments based on concentration inequalities in probability.

C. Stochastic bound

In this analysis, we assume oblivious adversary, which
indicates that the set J is chosen uniformly at random. The
goal is to gauge the likelihood that a random matrix A with an
arbitrary sparsity pattern will satisfy the mutual incoherence
condition. It is important to capture the network-topology-
induced pattern in A in this analysis.

Definition 11 (Sparsity pattern). For an arbitrary matrix A ∈
Rnm×nx , the sparsity pattern is a binary matrixN ∈ Rnm×nx
whose (i, j)-th entry is equal to 0 only if Aij = 0. Define the
set of matrices with a given sparsity pattern N as

S(N) := {A ∈ Rnm×nx |A ◦N = A},

where ◦ denotes the Hadamard (element-wise) product.

To conduct the analysis, we fix the sparsity pattern N
and assume that A is a sparse matrix with the given pattern,
where each entry is a random sub-Gaussian variable. In other
words, A = N ◦Ξ, where Ξ = {ξij}i∈[nm],j∈[nx] is a dense
random matrix with independent and identically distributed
sub-Gaussian random variables with variance proxy σ2 (c.f.,
[58, Chap. 1] for a detailed account of the terminologies).

In the following, we introduce some metrics to measure
the sparsity. For each j ∈ [nx], let njJ =

∑
i∈J Nij

and njJ c =
∑
i∈J c Nij denote the numbers of nonzero

entries in the columns of NJ and NJ c , respectively, and let
n∗J = maxj∈[nx] n

j
J and n∗J c = maxj∈[nx] n

j
J c be their upper

bounds, respectively.

Theorem 12. Suppose that the following conditions hold:

1) (Bounded moments) There exist constants q > 2 and ν ≥
1 such that E|ξij |q ≤ νq for every i ∈ [nx] and j ∈ [nm];

2) (Tall matrix) nm = (1 + δ)nx for some δ > δ0; and
3) (Saturated columns) There exists a constant cν ∈ (0, ν)

such that njJ c ≥ c2ν
|J c|

E|ξij |2 for all i ∈ [nm] and j ∈ [nx].
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Then, the minimization (S1-L1) recovers the true state with
probability (1 − κ) as long as the number of corrupted
measurements |J | is not too high and satisfies the inequality

min

{
c4|J c|,

|J c|
2a2

1n
∗
J nxσ

2a2
− ln 2nx

}
≥ ln

2

κ

where a1 =
c4ν

32ν2 (
c2ν

64ν2 )
q
q−2 , a2 = min{ 4

c2ν
a1, 20σ2} − ln 2

|J c| ,

and δ0 =
c2ν
4a1

.

The above theorem states that as long as the number of
good measurements is greater than the number of nonzero
elements in the spoiled part of the sensing matrix A up to a
constant multiplier (i.e., |J c| & const×n∗J nx), then with high
probability, the mutual incoherence condition is satisfied. This
agrees with the numerical results that the higher the number of
measurements (with a fixed number of bad data), the smaller
the mutual incoherence parameter.

D. Discussions

The premise of the proposed approach is that there are
abundant data for the grid. However, we do not require that
the data be highly reliable. In fact, with the prevalence of
cheaply available sensors, we consider the important case that
some of the data can be completely wrong due to various
reasons such as sensor faults, communication errors or even
cyber attacks. The situation of “abundant but untrusted” data
is very different from the case of “redundant and reliable”
data, because in the latter case, the data are believed to be
high-fidelity with very low error rates. The former is also a
more challenging scenario, and in particular classical SE based
on nonlinear least squares fails due to the adverse influence
of bad data. To resolve this issue, our algorithm is based on
a novel set of linear basis, where the number of variables
is larger than the number of real state variables; however, the
minimum number of measurements to guarantee identifiability
does not scale by the number of lines in the network, but
by the number of buses (Theorem 4). This means that it
can be a relatively succinct representation with the right set
of measurements (i.e., available measurements can form a
spanning tree of the network). Furthermore, our theoretical
analysis shows that under some mild conditions, the algorithm
recovers the ground truth even though part of the data are
completely wrong (Theorems 7 and 8). Generally speaking,
when the amount of data is low, a small set of bad data
would deteriorate the estimation and even make the system
unobservable. In other words, the prerequisite that the amount
of measured data is relatively high is mainly for robustness
purposes (Theorem 12).

Another advantage of the proposed method is the availabil-
ity of a convex formulation that can be solved efficiently using
second-order algorithms. The normal Gauss-Newton iteration
for nonlinear least squares is nonconvex, and therefore it
should be initialized at a point close to the ground truth to
guarantee convergence. Since we do not know a priori the
state of the system, there is no guarantee that the estimation
will converge to a point close to the ground truth. This is
especially true when there is an adverse situation with the state

changing rapidly. However, since both stages of the proposed
method are convex, the global optimal in each stage can be
found under mild conditions (Theorem 7 and Theorem 8).

Under the proposed framework, we do not explicitly dis-
tinguish leverage and/or vertical outliers [29], [59]. As long
as the mutual incoherence condition is satisfied, the proposed
method is able to deal with bad leverage points systematically.
The mathematical framework of this paper is also different
from two recent studies [39] and [60]. The work [39] focuses
on an iterative algorithm by locally linearizing the nonlinear
measurements; however, the convergence condition for non-
linear measurements needs to be verified using SDP and the
analysis is based on the “almost Euclidean property” (similar
to RIP), which is difficult to satisfy and the relation to the
underlying model of the system is not clear. The work [60] also
proposes a linear basis of representation, but it requires that
current measurements be known for all lines; it also includes
these measurements in the measurement Jacobian as if they
are the true value, which can seriously bias the estimation if
some of the measurements are bad data, also known as error-
in-variables in the statistics literature [61]. By contrast, the
sensing marix A in our paper comes from system topology
and physical parameters. In the normal situation, this matrix
is close to the actual system; however, we also allow that some
of the parameters in the matrix to be wrong, which means that
the corresponding measurements are treated as bad data.

V. EXPERIMENTS

Numerical evaluations are performed on IEEE benchmark
systems from MATPOWER [62]. This includes the Pan Eu-
ropean Grid Advanced Simulation and State Estimation (PE-
GASE) 9241-bus and 13659-bus systems, which represent the
size and complexity of the European high voltage transmission
network [63]. While PMU measurements can be incorporated
in the proposed framework, unless otherwise stated, we assume
the available measurements to include full nodal measurements
(i.e., voltage magnitudes and real/reactive injections) and bi-
directional real/reactive branch flows over all lines. All the
experiments are performed on a personal laptop with 3.3GHz
Intel Core i7 and 16GB memory.

In each case, we randomly generate 50 sets of dense noisew
and sparse bad data b. The dense noise for each measurement
is zero-mean Gaussian variable, with standard deviation of
0.1 × cn (per unit) for voltage magnitude measurements and
cn (per unit) for all the other measurements, where cn is
the dense noise level. This setup is inspired by the fact that
voltage magnitude sensors have higher standards of accuracy
compared to power meters. For the sparse bad data, unless
otherwise specified, its support J is randomly selected among
the line measurements, with the only assumption that at most
1 bad data measurement exists for each line. The values
for the sparse noise can be arbitrarily large, and we assume
that these parameters are uniformly chosen from the set
[−4.25,−3.75] ∪ [3.75, 4.25] (per unit).

We adopt the root-mean-square error (RMSE) as the per-
formance metric, which is defined as

√
1
nb

∑
i∈N |vi − v̂i|2,

where vi and v̂i are the true and estimated complex voltage
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Fig. 3: Evaluation of the (S1-L1)–cleaning–direct recovery (L1-Direct), (S1-LASSO)–cleaning–direct recovery (LASSO-Direct),
and local search with `1 loss (L1-Local) and squared loss with cleaning step (since the RMSE is greater than 0.2, its line is
not shown on the graph) for the IEEE 300-bus system. We vary the percentage of bad data measurements from 0% to 10%
(out of all line measurements), with the dense noise level fixed at cn =0.5%. The plots in (b) indicate the median (line with
circles) and the min/max value (shaded region).

TABLE II: Comparison of the (S1-L1)–cleaning–direct recovery (L1-Direct), (S1-LASSO)–cleaning–direct recovery (LASSO-
Direct), and local search with `1 loss and Newton’s method with bad data detection. We fix the percentage of bad data at 5%
(out of all line measurements) and dense noise level at cn =0.5%.

Newton method Local search `1 LASSO-Direct L1-Direct
RMSE F1 Time (s) RMSE F1 Time (s) RMSE F1 Time (s) RMSE F1 Time (s)

14 Bus .002 .852 0.6 .001 1 0.3 .001 1 2.3 .001 1 2.2
30 Bus .042 .808 2.4 .001 .996 0.4 .002 1 2.3 .002 1 2.2
57 Bus .043 .827 3.2 .001 .998 1.2 .004 .999 2.3 .004 .999 2.1

118 Bus .003 .848 7.4 .002 .980 4.1 .002 1 1.5 .002 1 1.3
300 Bus .699 .379 58.1 .093 .858 21.6 .004 .999 2.6 .004 .999 1.2

at bus i ∈ N . To evaluate the bad data detection accuracy,
we use the F1 score, which is defined as 2∗precision×recall

precision+recall ,

where precision is given by #True positives |J∩Ĵ |
#Conditional positives |Ĵ | , and recall

is given by #True positives |J∩Ĵ |
#Conditional positives |J | , and J and Ĵ denote the

true and estimated support of bad data (# shows the number
of elements). The F1 score is the harmonic average of the
precision and recall, which reaches its best value at 1 (perfect
precision and recall) and worst at 0.

We compare the proposed method (stage-1 estimators
(S1-L1) or (S1-LASSO) combined with stage-2 direct recovery
method) with the current practice local search method using
the squared loss Newton method, and another local search
method that replaces the squared loss with `1 loss [30]. We
use SeDuMi [64] as the linear programming solver, and the
MATLAB implementation of limited-memory BFGS [65] for
the local search methods, similar to [30]. Throughout the
experiment, we choose λ in (S1-LASSO) to be 3×10−4/nm,
which we found to be consistently well-behaving. In addition,
we choose a threshold of 0.1 for stage-1 estimators and 0.3
for local search methods, which seem to work best for all
methods to detect bad data. After the removal of bad data (i.e.,
cleaning step), we can optionally perform the estimation with
the remaining data for both the proposed stage-1 estimators
and the Newton method.

First, we evaluate the robustness of the methods to bad data.
As is shown in Fig. 3, due to convergence issues and spurious
local minima, none of the local search methods could correctly
estimate the true state. On the other hand, with the increase

of bad data percentage, the proposed methods can reliably
recover the ground truth, even with 10% of arbitrarily bad
data. This can be implied from the lower eigenvalue conditions
and the mutual incoherence conditions, which remain well-
conditioned with the presence of bad data. We also perform the
experiments on other systems, as is shown in Table II with bad
data fixed at 5% level and dense noise fixed at cn =0.5%. It
can be observed that local search methods (with a cleaning step
for Newton’s method) perform relatively well when the scale
is small (up to 118 buses), but the performance (e.g., RMSE
and bad data detection F1 score) deteriorates significantly for
larger systems due to the existence of spurious local minima.
In addition, the proposed methods remain superior, due to the
efficient detection of bad data (with F1 score close to 1).

Next, we examine the performance of the proposed esti-
mators when both the dense noise and the bad data intensity
vary. We test on the French very high voltage and high voltage
transmission network with 2848 buses [63]. As is shown
in Fig. 4, the algorithm achieves a low RMSE with up to
1000 bad data measurements and 1% level of dense noise.
The detection score for bad data remains above 99% for all
the scenarios. We also show that due to the high detection
accuracy of the bad data, it is beneficial to redo the estimation
after the cleaning stage (LASSO Clean), which can improve
the RMSE of estmation espeically when the number of bad
data measurements is significant.

Last but not least, we demonstrate the scalability of the
method on large systems with up to 13659 buses, which is
the largest system provided by MATPOWER and challenging
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Fig. 4: Evaluation of the (S1-LASSO)–direct recovery method on the PEGASE 2848-bus system. The dense noise level cn
varies from 0 to 2%, and the number of bad data measurements ranges up to 2000 (roughly 9% of the total line measurements).
The bad data detection accuracy is shown as the F1 score. After the detection of bad data, they are removed and the remaining
clean data are used again in the estimation (LASSO Clean).

for the existing algorithms (Table III). We evaluate the per-
formance of the algorithm with data redundancy lower than
the full set of measurements. In particular, we first examine
Case A where the measurements include voltage magnitudes
at all buses {|vk|}k∈N and three branch flows over all lines
{p(`)
ij , p

(`)
ji , q

(`)
ij }`∈L and then study Case B as a sparse scenario

that includes voltage magnitudes at all buses {|vk|}k∈N but
three branch flows on a spanning tree and 0.2×nb additional
lines. The number of measurements scales by the number of
buses in Case B, and is comparable to the classical setting
of the power flow calculation. In this experiment, we relax
the previous assumption of having only one bad measurement
per line and instead allow all measurements associated with
the line to be corrupted. This model allows accounting for
correlated bad data, which are the most challenging ones
to identify. The lines with compromised data are chosen
randomly, but they are checked to ensure that the network
does not become disconnected after removing those lines. We
fix the dense noise level at 0.5% and the percentage of bad data
at 1% of the full measurements (i.e., 0.01× (3×nb + 4×nl)
number of bad data) for all the cases. The number of bad
data measurements ranges from 120 (for PEGASE 1354-bus)
to 1228 (for PEGASE 13659-bus).

It can be observed that the performance is satisfactory
in all of the scenarios, and the estimation becomes more
robust with a higher number of measurements (i.e., lower
RMSE and higher bad data detection accuracy). Moreover,
all computations are performed within a minute, which is
important for real-time situational awareness.

VI. CONCLUSION

In this study, we proposed a linear basis of representation
for power system measurements that succinctly captures the
topology of the network. This leads to a two-stage estimation
approach that efficiently solve the nonconvex SE under mild
conditions usually satisfied with a sufficient instrumentation of
sensors. The proposed algorithm is provably robust to bad data.
We developed a robustness metric based on a deterministic
quantity called mutual incoherence. Theoretical analysis of

TABLE III: Evaluation in large-scale benchmarks. Case A
includes voltage magnitude measurements on all buses and
3 branch flow measurements; Case B includes voltage mea-
surement on all buses and 3 branch flow measurements on
1.2× nb lines that consist of a spanning tree of the network.
We use the (S1-LASSO)-Cleaning-Direct recovery method in
both cases.

Case A Case B Time
RMSE F1 RMSE F1 (sec)

1354 Bus .003 .996 .003 .995 9.8

2848 Bus .004 .995 .003 .996 13.6

3012 Bus .003 .998 .001 .998 18.5

6495 Bus .005 .994 .005 .996 36.2

9241 Bus .007 .993 .009 .994 43.6

13659 Bus .007 .994 .009 .995 52.4

the global recovery condition and statistical error bounds was
conducted, which relied on this key metric. The algorithm
demonstrated robustness to bad data in various empirical
evaluations, and achieved superior performance compared to
baselines. Above all, the proposed method exhibited a satis-
factory scalability for large systems with more than 13,000
buses. In contrast to semidefinite programming relaxation
approaches, the SE can be solved with high accuracy within a
minute for such large systems. This can significantly improve
real-time situational awareness of grid operation.
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APPENDIX

A. Proof of Theorem 4

Proof. Since the only element in the null space of Aspan is
0, the measurement equation (4) has a unique solution, which
corresponds to the true state x\. By the algorithm in stage 2,
outlined in Sec. III-B, this recovers the true state of the grid.

B. Proof of Theorem 7

Proof. The dual program of (S1-L1) is given by:

max
h∈Rnm

h>y, subject to h>A = 0, ‖h‖∞ ≤ 1.

(L1-Dual)
To show that (x\, b\) is the optimal solution of (S1-L1), we
simply need to find a dual certificate h? that satisfies the
Karush-Kuhn-Tucker (KKT) conditions:

(dual feasibility) h>? A = 0, (10)
(stationarity) h? ∈ ∂‖b\‖1, (11)

where ∂‖b\‖1 denotes the subgradiet of ‖b\‖1. By the def-
inition of J := supp(b\), we need to find an h? such
that h?J = sign(b\J ) and ‖h?J c‖∞ ≤ 1. In fact, we
can meet a slightly stronger condition for strict feasibility
by choosing h?J c = −A>+

J c A
>
J sign(b\J ), which satisfies

strict dual feasibility (i.e., ‖h?J c‖∞ < 1) due to the mutual
incoherence condition. Thus, this certifies the optimality of
(x\, b\) for (S1-L1).

To show that (x\, b\) is the unique optimal solution, let
(x̃, b̃) be an arbitrary feasible point of (S1-L1) different from
(x\, b\). Due to the lower eigenvalue condition, the matrix
QJ :=

[
A I>J

]
has full column rank. Let J̃ = supp(b̃),

then J̃ must not be equal to or be a subset of J , because

otherwise, from QJ

[
x\
b\

]
= QJ

[
x̃

b̃

]
= y, we must have[

x\
b\

]
=

[
x̃

b̃

]
, which is contradictory to the assumption. Let

J̃c = J̃ \ J , then,

‖b\‖1 = h>? y (12)

= h>? (Ax̃+ I>J̃c b̃J̃c + I>J b̃J ) (13)

= h>
?J̃c b̃J̃c + h>?J b̃J (14)

≤ ‖h?J̃c‖∞‖b̃J̃c‖1 + ‖h?J ‖∞‖b̃J ‖1 (15)

< ‖b̃J̃c‖1 + ‖b̃J ‖1 (16)

= ‖b̃‖1, (17)

where (12) is due to the strong duality between (S1-L1) and
(L1-Dual), (13) is due to the primal feasibility of (x̃, b̃), (14)
is due to the dual feasibility condition (10), (15) is due to the
Hölder inequality, and (16) is due to the strict feasibility of h?.
Thus, we have shown the uniqueness of the optimal solution
(x\, b\).

C. Proof of Theorem 8

We design the primal-dual witness (PDW) process as fol-
lows (note that this is not an actual algorithm, because we do
not know the true support J ; rather, it is only part of a proof
technique popularized by [52]):

1) Set b̂J c = 0
2) Determine (x̂, b̂J ) by solving the following program:

min
b∈Rnm ,x∈Rnx

1

2nm

∥∥∥y −Ax− I>J bJ ∥∥∥2

2
+ λ‖bJ ‖1,

(18)
and ẑJ ∈ ∂‖b̂J ‖1 satisfying

− 1

nm
IJ (y −Ax̂− I>J b̂J ) + λẑJ = 0, (19)

A>(y −Ax̂− I>J b̂J ) = 0. (20)

3) Solve ẑJ c via the zero-subgradient equation:

− 1

nm
(y −Ax̂− b̂) + λẑ = 0 (21)

and check whether strict feasibility condition ‖ẑJ c‖∞ <
1 holds.

Lemma 13. If the PDW procedure succeeds, then (x̂, b̂) where
b̂ = (b̂J , 0) is unique optimal of (S1-LASSO).

Proof. If PDW succeeds, then the optimality conditions (20)
and (21) are satisfied, which certify the optimality of (x̂, b̂).
The subgradient ẑ satisfies ‖ẑJ c‖∞ < 1 and

〈
ẑ, b̂
〉

= ‖b̂‖1.
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Now, let (x̃, b̃) be any other optimal, and let F (x, b) =
1

2nm
‖y −Ax− b‖22, then we have

F (x̂, b̂) + λ
〈
ẑ, b̂
〉

= F (x̃, b̃) + λ‖b̃‖1,

and hence we have

F (x̂, b̂) + λ
〈
ẑ, b̂− b̃

〉
= F (x̃, b̃) + λ

(
‖b̃‖1 −

〈
ẑ, b̃
〉)

.

By the optimality conditions (20) and (21), we have λẑ =
−∇bF (x̂, b̂) = 1

nm
(y−Ax̂− b̂) and ∇xF (x̂, b̂) = 0 , which

imply that

F (x̂, b̂)−
〈
∇bF (x̂, b̂), b̂− b̃

〉
− F (x̃, b̃)

= λ
(
‖b̃‖1 −

〈
ẑ, b̃
〉)
≤ 0

due to convexity. We thus have ‖b̃‖1 ≤
〈
ẑ, b̃
〉

. Since by

Holder’s inequality, we also have
〈
ẑ, b̃
〉
≤ ‖ẑ‖∞‖b̃‖1 and

‖ẑ‖∞ ≤ 1, we must have ‖b̃‖1 =
〈
ẑ, b̃
〉

, and b̃j = 0 for j ∈
J c. This means that we have supp(b̃) ⊆ supp(b̂) ⊆ J . By
restricting the optimization of b in (S1-LASSO) to the support
J and by the lower eigenvalue condition, the optimization is
strictly convex and the uniqueness of the solution follows.

Lemma 14. Suppose that Q>JQJ is invertible for J ⊂ [m],
where QJ =

[
A I>J

]
. Then, we have

ρ(J ) = ‖AJ cIx(Q>JQJ )−1I>b ‖∞. (22)

Proof. We will show that for any given J ⊂ [m], we have
AJ cIx(Q>JQJ )−1I>b = −A>+

J c A
>
J . By the definition of

QJ and block matrix inversion formula, we have

Ix(Q>JQJ )−1I>b

= −(A>A)−1A>J (I −AJ (A>A)−1A>J )−1

= −(A>A)−1A>J (I +AJ (A>J cAJ c)
−1A>J )

= −(A>A)−1(I +A>JAJ (A>J cAJ c)
−1)A>J

= −(A>J cAJ c)
−1A>J ,

where the first equation follows from the Sherman–Morrison–
Woodbury formula (c.f., Prop. 18 in Sec. G) and the rest are
elementary operations.

Lemma 15. Suppose that Q>JQJ is invertible for a given
J ⊂ [m], where QJ =

[
A I>J

]
. Then, we have

Ib(Q
>
JQJ )−1I>b = I +AJ (A>J cAJ c)

−1A>J (23)

Proof. By the definition of QJ and block matrix inversion
formula, we have

Ib(Q
>
JQJ )−1I>b = (I −AJ (A>A)−1A>J )−1

= I +AJ (A>J cAJ c)
−1A>J ,

where the second equation follows from the Sherman–
Morrison–Woodbury formula.

Proof of Theorem 8

We prove each part sequentially:
Part 1): By the construction of PDW, we have b̂J c =

b\J c = 0. The zero-subgradient condition (21) can be written
as:

− 1

nm

([
IJA
IJ cA

]
(x\ − x̂) +

[
IJ
0

]
(b\ − b̂)

)
− 1

nm

[
IJ
IJ c

]
w\ + λ

[
ẑJ
ẑJ c

]
=

[
0
0

]
,

where the equations indexed by J can be re-written as:

− 1

nm

[
IJA IJ I

>
J
] [ x\ − x̂
bJ \ − b̂J

]
(24)

− 1

nm
IJw\ + λẑJ = 0.

Solving for ẑJ c yields

ẑJ c =
1

nmλ
IJ c (A(x\ − x̂) +w\) . (25)

Similarly, combining (20) and (24), we have

− 1

nm

[
A>A A>I>J
IJA IJ I

>
J

] [
x\ − x̂
bJ \ − b̂J

]
− 1

nm

[
A>

IJ

]
w\ +

[
0

λẑJ

]
= 0.

Thus, by the lower eigenvalue condition (see Def. 1), we can

solve for the estimation error ∆ =

[
x\ − x̂
bJ \ − b̂J

]
:

∆ = −(Q>JQJ )−1Q>Jw\ + nmλ(Q>JQJ )−1

[
0
ẑJ

]
. (26)

Recall that Ix and Ib denote the matrix that consists of the
first nx rows and last |J | rows of the identity matrix of size
nx+|J |, respectively. Then, we can plug the estimate of x\−x̂
in (25) to get:

ẑJ c = − 1

nmλ
IJ cAIx(Q>JQJ )−1Q>Jw\

+ IJ cAIx(Q>JQJ )−1

[
0
ẑJ

]
+

1

nmλ
IJ cw\

= IJ cAIx(Q>JQJ )−1I>b ẑJ︸ ︷︷ ︸
µ

+ IJ c
(
I −AIx(Q>JQJ )−1Q>J

) w\

nmλ︸ ︷︷ ︸
ξJc

.

By the mutual incoherence condition (i.e., ρ(J ) = 1 − γ for
γ > 0) and Lemma 14, we have ‖µ‖∞ ≤ 1− γ. Let ΠQ⊥J

=

J −QJ (Q>JQJ )−1Q>J be the orthogonal projection matrix,
then we have:

ξJ c =
(
IJ cΠQ⊥J

+ IJ cI
>
J Ib(Q

>
JQJ )−1Q>J

)( w\

nmλ

)
= IJ cΠQ⊥J

(
w\

nmλ

)
,

since IJ cI>J = 0. Since the elements of w are zero-mean
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sub-Gaussian with parameter σ2, and the projection operator
has spectral norm one, we have

P
(
‖ξJ c‖∞ ≥ t

)
≤ 2|J c| exp

(
−n

2
mλ

2t2

2σ2

)
.

Setting t = γ
2 yields:

P
(
‖ξJ c‖∞ ≥

γ

2

)
≤ 2 exp

(
−n

2
mλ

2γ2

8σ2
+ log(nm − |J |)

)
.

By the design of λ, we conclude that

P
(
‖ẑJ c‖∞ ≥ 1− γ

2

)
≤ 2 exp

(
−c1n2

mλ
2
)
.

Part 2): Now, we will bound the estimation error ∆ in (26).
First, we bound the infinity norm of bJ \ − b̂J = Ib∆. By
triangle inequality,

‖Ib∆‖∞ ≤ ‖Ib(Q>JQJ )−1Q>Jw\‖∞
+ nmλ‖Ib(Q>JQJ )−1I>b ‖∞.

Since the second term is deterministic, we will now bound
the first term. By the normalized measurement condition
(6) and the lower eigenvalue condition (5), each entry of
(Q>JQJ )−1Q>Jw\ is zero-mean sub-Gaussian with parameter
at most

σ2‖(Q>JQJ )−1‖2 ≤
σ2

Cmin
.

Thus, by the union bound, we have

P
(
‖Ib(Q>JQJ )−1Q>Jw\‖∞ > t

)
≤ 2 exp

(
−Cmint

2

2σ2
+ log |J |

)
.

Then, set t = nmλ
2
√
Cmin

, and note that by our choice of λ, we

have Cmint
2

2σ2 > log |J |. Thus, we conclude that

‖bJ \ − b̂J ‖∞ ≤ nmλ
(

1

2
√
Cmin

+ ‖Ib(Q>JQJ )−1I>b ‖∞
)

with probability greater than 1− 2 exp(−c2n2
mλ

2). This indi-
cates that for bad data entries greater than

g(λ) = nmλ

(
1

2
√
Cmin

+ ‖Ib(Q>JQJ )−1I>b ‖∞
)

will be detected by b̂.

Part 3): Now, we bound the `2 norm of the signal error
x\ − x̂ = Ix∆,

‖Ix∆‖2 ≤ ‖Ix(Q>JQJ )−1Q>Jw\‖2
+ nmλ‖Ix(Q>JQJ )−1I>b ‖∞,2.

For the first term, by the application of standard sub-Gaussian
concentration (see Theorem 16), we have

P

(
‖Ix(Q>JQJ )−1Q>Jw\‖2 > ‖Ix(Q>JQJ )−1Q>J ‖F

+ t‖Ix(Q>JQJ )−1Q>J ‖2

)
≤ exp

(
−c1t

2

σ4

)
.

Since by Prop. 17,

‖Ix(Q>JQJ )−1Q>J ‖F ≤ ‖Ix‖2‖(Q
>
JQJ )−1‖2‖Q>J ‖F

≤
√
nm + |J |
Cmin

due to the lower eigenvalue condition (5) and the normalized
measurement assumption (6), and similarly we have

‖Ix(Q>JQJ )−1Q>J ‖2 ≤ ‖Ix‖2‖(Q
>
JQJ )−1‖2‖Q>J ‖F

≤
√
nm + |J |
Cmin

,

we have

P

(
‖Ix(Q>JQJ )−1Q>Jw\‖2 > t

√
nm + |J |
Cmin

)

≤ exp

(
−c1t

2

σ4

)
.

Together, we conclude that

‖x\ − x̂‖2 ≤ t
√
nm + |J |
Cmin

+ nmλ‖Ix(Q>JQJ )−1I>b ‖∞,2

with probability greater than 1− exp
(
− c1t

2

σ4

)
.

D. Proof of Corollary 9

The proof is similar to that of Theorem 8. We need to make
changes such that w\ = 0 whenever necessary, and some
elementary operations lead to the results.

E. Proof of Proposition 10

Proof. The `-th component of the vector θ̂∆ :

[θ̂∆]` = arctan

(
xim
`

xre
`

+
x̂im
` x

re
` − xim

` x̂
re
`

x̂re
` x

re
`

)
Since the arctangent is a Lipschitz function with constant 1,
we can establish the bound:

|[θ̂∆]` − [θ∆]`| ≤ | x̂
im
` x

re
`−x

im
` x̂

re
`

x̂re
` x

re
`
| = |e`|

After using the closed-form expression (7) for θ̂, the result
will easily follow.

F. Proof of Theorem 12

Proof. For a vector s ∈ {+1,−1}|J | define r = −A>J s. From
the definition of sub-Gsussian distribution, we have that for
any j ∈ [nx] :

E exp(t

njJ∑
k=1

ξkj) =

niJ∏
k=1

E exp(tξkj) ≤
niJ∏
k=1

exp(
σ2t2

2
)

Therefore, due to the symmetry of ξ,

rj ∼ subG(njJ σ
2),

and r is a sub-Gaussian random vector with variance proxy
n∗J σ

2.

It is sufficient to have ‖A>+
J c r‖∞ ≤ 1 to guarantee the

perfect recovery. We further relax this condition to the form
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‖A>+
J c ‖∞‖r‖∞ ≤

√
nx‖A>+

J c ‖2‖r‖∞ ≤ 1. By [58, Thm.
1.14], we have:

P(‖r‖∞ > t) ≤ 2nx exp(− t2

2n∗J σ
2

).

Also notice that ‖A>+
J c ‖2 = 1

sn(A>Jc )
, where sn(·) is the

minimal singular value of the argument. By |J c| ≥ nx ≥ 1,
due to Proposition 2.2 of [66], there exist c = c(σ) and
C = C(σ) such that for every t > C it holds that
P(‖AJ c‖2 > t

√
|J c|) ≤ exp(−ct2|J c|). (We calculated the

precise form of c(σ) and C(σ) based on Fact 2.4. from [67]
and the inequality ‖ξ‖ψ ≤

√
6σ) After applying this result

and the assumptions of the theorem for using Theorem 1.1 of
[66], one gets the following bound:

P

(
‖A>+
J c ‖2 >

a1√
|J c|

)
≤ 2 exp(−a2|J c|).

Consequently, P(‖A>+
Jc r‖∞ ≤ 1) > 1 − κ if and only if

max{−c4|Jc|, log 2nx − |Jc|
2a21n

∗
Jnxσ

2a2
} ≤ ln κ

2 .

G. Some technical background

Theorem 16 (sub-gaussian concentration [68]). Let B be an
m × n matrix, and let x = (x1, ..., xn) ∈ Rn be a random
vector with independent, zero mean, sub-gaussian coordinates
with parameter σ2. Then,

P (‖Bx‖2 ≥ ‖B‖F + t‖B‖2) ≤ exp

(
−c1t

2

σ4

)
.

Proposition 17. For matrices A,B of appropriate sizes, we
have the following:

‖AB‖F ≤ ‖A‖2‖B‖F , ‖AB‖F ≤ ‖B‖2‖A‖F .

Proof. First, we show that ‖AB‖F ≤ ‖A‖2‖B‖F . Let B =

[
b1 · · · bn

]
=


b
>
1
...
b
>
m

, where bi and bj denote its columns

and rows, respectively. Thus,

‖AB‖2F =

n∑
i=1

‖Abi‖22 ≤ ‖A‖22
n∑
i=1

‖bi‖2 = ‖A‖22‖B‖2F .

Similarly, we can show that ‖AB‖F ≤ ‖B‖2‖A‖F .

Proposition 18 (Sherman–Morrison–Woodbury formula). Let
A, C, and C−1 +DA−1B be non-singular block matrices.
Then,

(A+BCD)−1 = A−1−A−1B(C−1+DA−1B)−1DA−1.
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