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Abstract

The restricted isometry property (RIP) is a well-known condition that guarantees the
absence of spurious local minima in low-rank matrix recovery problems with linear mea-
surements. In this paper, we introduce a novel property named bound difference property
(BDP) to study low-rank matrix recovery problems with nonlinear measurements. Using
RIP and BDP jointly, we first focus on the rank-1 matrix recovery problem, for which we
propose a new criterion to certify the nonexistence of spurious local minima over the entire
space. We then analyze the general case with an arbitrary rank and derive a condition to
rule out the possibility of having a spurious solution in a ball around the true solution.
The developed conditions lead to much stronger theoretical guarantees than the existing
bounds on RIP.

1. Introduction

The low-rank matrix recovery problem plays a central role in many machine learning prob-
lems, such as recommendation systems (Koren et al., 2009) and motion detection (Zhou
et al., 2013; Fattahi and Sojoudi, 2020). It also appears in engineering problems, such as
power system state estimation (Zhang et al., 2018c). The goal of this problem is to recover
an unknown low-rank matrix M∗ ∈ Rn×n from certain measurements of the entries of M∗.
The measurement equations may be linear or nonlinear, which will be discussed separately
in the next two subsections.

1.1 Low-Rank Matrix Recovery with Linear Measurements

The basic form of the low-rank matrix recovery problem is the symmetric and noiseless
one with linear measurements and the quadratic loss. The linear measurements can be
represented by a linear operator A : Rn×n → Rm given by

A(M) = (〈A1,M〉, . . . , 〈Am,M〉)T .

∗. A preliminary version of this paper has appeared in Bi and Lavaei (2020). Compared with the conference
paper, we have developed a major new result on the local guarantee for the absence of spurious local
minima in the general rank-r case and included a new application from machine learning to illustrate
the effectiveness of our results.
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The ground-truth matrix M∗ is assumed to be symmetric and positive semidefinite with
rank(M∗) ≤ r. The recovery problem can be formulated as follows:

min
1

2
‖A(M)− d‖2

s. t. rank(M) ≤ r,
M � 0, M ∈ Rn×n,

(1)

where d = A(M∗). By factoring the decision variable M into its low-rank factors XXT ,
the above problem can be rewritten as the unconstrained problem:

min
X∈Rn×r

{
1

2
‖A(XXT )− d‖2

}
. (2)

The optimization (2) is commonly solved by local search methods. Since (2) is generally
nonconvex, local search methods may converge to a spurious local minimum (a non-global
local minimum is called a spurious solution). To provide theoretical guarantees on the
performance of local search methods for the low-rank matrix recovery, several papers have
developed various conditions under which the optimization (2) is free of spurious local
minima. In what follows, we will briefly review the state-of-the-art results on this problem.

Given a linear operator A, define its corresponding quadratic formQ : Rn×n×Rn×n → R
as

[Q](K,L) = 〈A(K),A(L)〉, (3)

for all K,L ∈ Rn×n.

Definition 1 (Recht et al. (2010)) A quadratic form Q : Rn×n×Rn×n → R satisfies the
restricted isometry property (RIP) of rank 2r for a constant δ ∈ [0, 1), denoted as δ-RIP2r,
if

(1− δ)‖K‖2F ≤ [Q](K,K) ≤ (1 + δ)‖K‖2F
for all matrices K ∈ Rn×n with rank(K) ≤ 2r.

Ge et al. (2017) showed that the problem (2) has no spurious local minima if the
quadratic form Q satisfies δ-RIP2r with δ < 1/5. Zhang et al. (2019) strengthened this
result for the special case of r = 1 by showing that δ-RIP2r with δ < 1/2 is sufficient to
guarantee the absence of spurious local minima for (2). Zhang et al. (2018a) provided an
example with a spurious local minimum in case of δ = 1/2 to support the tightness of the
bound.

When δ ≥ 1/5 in the case r > 1 or δ ≥ 1/2 in the case r = 1, the δ-RIP2r property
can still be useful in the sense that they can lead to local guarantees for the absence of
spurious local minima in the problem (2), rather than global guarantees. This means that
there is no spurious local minimizer X as long as XXT is in a neighborhood of M∗. Under
a local guarantee, local search methods would still converge to the global optimal solution
if they are initialized sufficiently close to the ground truth. Many techniques for finding
such a good initial point have been developed in the literature (see Section 2 for a brief
discussion). In the rank-1 case, Zhang et al. (2019) proved the following local guarantee for
the absence of spurious local minima:
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Theorem 2 (Zhang et al. (2019)) Assume that r = 1 and the quadratic form Q satisfies
the δ-RIP2 property for some constant δ such that

δ <

√
1− ε2

2(1− ε)

with 0 < ε ≤ (
√

5 − 1)/2. Then, the problem (2) has no spurious local minimizer X that
satisfies

‖XXT −M∗‖F ≤ ε‖M∗‖F .

Note that ε‖M∗‖F defines the radius of the ball around the ground truth that is devoid
of spurious solutions. The recent work (Zhang and Zhang, 2020) generalized the techniques
in Zhang et al. (2019), which led to the following result that can be applied to the rank-
r case for any r but is weaker than Theorem 2 in the rank-1 case (rewritten here in an
equivalent form):

Theorem 3 (Zhang and Zhang (2020)) Assume that the quadratic form Q satisfies the
δ-RIP2r property for some constant δ such that δ <

√
1− ε with 0 < ε ≤ 1. Then, the

problem (2) has no spurious local minimizer X that satisfies

‖XXT −M∗‖F ≤ ελr(M∗).

1.2 Nonlinear Low-Rank Matrix Recovery

Given the above-mentioned results for the low-rank matrix recovery problems with linear
measurements, it is natural to investigate whether these results can be extended to problems
that are similar to (2) but have more complex objective functions. The purpose of this paper
is to study the existence of spurious local minima for the general low-rank matrix recovery
problem

min
X∈Rn×r

f(XXT ), (4)

where f : Rn×n → R is an arbitrary function. Problems of this form are abound in many
machine learning tasks (see Section 6 for an application). Moreover, every polynomial
optimization problem can be formulated as such, and therefore the analysis of (4) enables
the design of global optimization techniques for nonconvex polynomial optimization (Madani
et al., 2017). In this paper, f is always assumed to be twice continuously differentiable.
The problem (2) is a special case of (4) by choosing

f(M) =
1

2
‖A(M)− d‖2. (5)

In the case with linear measurements, note that f(M∗) = 0 and therefore M∗ is a global
minimizer of f . In other words, there are often infinitely many minimizers for f , but the
goal is to find the ground-truth low-rank solution M∗. Similar to the linear measurement
case, we assume that the problem (4) has a ground truth M∗ = ZZT with rank(M∗) ≤ r
that is a global minimizer of f(M).
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The Hessian of the function f in (4), denoted as ∇2f(M), can be also regarded as a
quadratic form whose action on any two matrices K,L ∈ Rn×n is given by

[∇2f(M)](K,L) =
n∑

i,j,k,l=1

∂2f

∂Mij∂Mkl
(M)KijLkl.

If f is considered to be the special function in (5), then its corresponding Hessian ∇2f(M)
becomes exactly the quadratic form Q defined in (3). Therefore, we naturally extend the
definition of the δ-RIP2r property for quadratic forms given in Definition 1 to general
functions f by restricting their Hessian.

Definition 4 A twice continuously differentiable function f : Rn×n → R satisfies the re-
stricted isometry property of rank 2r for a constant δ ∈ [0, 1), denoted as δ-RIP2r, if

(1− δ)‖K‖2F ≤ [∇2f(M)](K,K) ≤ (1 + δ)‖K‖2F (6)

for all matrices M,K ∈ Rn×n with rank(M) ≤ 2r and rank(K) ≤ 2r.

It is still unknown whether the δ-RIP2r condition could lead to the nonexistence of
spurious local minima. However, Li et al. (2019) proved that the problem (4) has no spurious
local minima under a stronger condition, named δ-RIP2r,4r with δ < 1/5, as defined below.

Definition 5 A twice continuously differentiable function f : Rn×n → R satisfies the re-
stricted isometry property of rank (2r, 4r) for a constant δ ∈ [0, 1), denoted as δ-RIP2r,4r,
if

(1− δ)‖K‖2F ≤ [∇2f(M)](K,K) ≤ (1 + δ)‖K‖2F
for all matrices M,K ∈ Rn×n with rank(M) ≤ 2r and rank(K) ≤ 4r.

For the general recovery problem (4) with r = 1, the previous results in Zhang et al.
(2019) and Li et al. (2019) both have serious limitations. The bound δ < 1/2 given in Zhang
et al. (2019) is proven to be tight in the case when f is generated by linear measurements,
but it is not applicable to nonlinear measurements. The bound δ < 1/5 given in Li et al.
(2019) can be applied to a general function f , but it is not tight even in the linear case. To
address these issues, we develop a new criterion to guarantee the absence of spurious local
minima globally in (4) for a general function f in the rank-1 case, which is more powerful
than the previous conditions. Unlike the bound given in Li et al. (2019), our new criterion
completely depends on the properties of the Hessian of the function f applied to rank-2
matrices, rather than rank-4 matrices. Note that the rank-1 case has applications in many
problems, such as motion detection (Fattahi and Sojoudi, 2020) and power system state
estimation (Zhang et al., 2018c).

For the problem (4) with r > 1, we also present a new local guarantee for the absence of
spurious local minima near the ground truth M∗. Our work not only offers the first result
in the literature on the local guarantee for general nonlinear problems, but also exhibits an
improvement over the previous results stated in Theorem 2 and Theorem 3 for problems
with linear measurements.
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1.3 Notations

In is the identity matrix of size n × n, and diag(a1, . . . , an) is a diagonal matrix whose
diagonal entries are a1, . . . , an. A = vecA is the vector obtained from stacking the columns
of a matrix A. Given a vector A ∈ Rn2

, define its symmetric matricization matS A =
(A + AT )/2, where A ∈ Rn×n is the unique matrix satisfying A = vecA. A ⊗ B is the
Kronecker product of A and B, which satisfies the well-known identity:

vec(AXBT ) = (B ⊗A) vecX.

For two matrices A,B of the same size, define their inner product

〈A,B〉 = tr(ATB) = 〈vecA, vecB〉,

and let ‖A‖F =
√
〈A,A〉 denote the Frobenius norm of the matrix A, where tr(·) is the

trace operator. Moreover, ‖v‖ is the Euclidean norm of the vector v. For a square matrix
A ∈ Rn×n, A � 0 means that A is symmetric and positive semidefinite. Let

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A)

denote the eigenvalues of A sorted in a decreasing order.

2. Related Works

The classical approach for solving low-rank matrix recovery problems is through convex
relaxations. A semidefinite program can be obtained by removing the nonconvex low-rank
constraint in (1). Since the seminal work by Recht et al. (2010), there is a plethora of
researches on deriving conditions under which the convex relaxation is able to recover the
exact solution of the original nonconvex problem. Most of the proposed conditions are
based on RIP, including Candès and Plan (2011); Candes et al. (2013); Cai and Zhang
(2013); Zhang and Li (2017); Li et al. (2020). Another direction is to show that the convex
relaxation is exact with high probability if the measurements are random and have sufficient
number of samples (Candès and Recht, 2009; Candès and Tao, 2010). The major drawback
of the convex relaxation approach is that semidefinite programs are expensive to solve for
large-scale problems arising in machine learning.

An alternative approach for solving low-rank matrix recovery problems is based on local
search methods, such as gradient descent algorithms (Rennie and Srebro, 2005; Lee et al.,
2010; Recht and Ré, 2013; Ge et al., 2015; Tu et al., 2016), iterative hard thresholding
(Rauhut et al., 2017) and trust-region methods (Sun et al., 2016; Boumal et al., 2019).
They can be efficiently applied to large-scale problems, but the quality of the obtained so-
lution depends on whether the objective has a benign landscape. As previously discussed
in Section 1, RIP-type conditions can be used to guarantee the absence of spurious local
minima over the entire space. Under these conditions, any local search method that con-
verges to a local minimum will be able to recover the globally optimal solution. The existing
proof techniques for the analysis of spurious local minima can be roughly categorized into
two groups: 1) checking whether an arbitrary matrix X is a spurious local minimizer for a
given measurement operator A and a given ground truth matrix M∗ (Bhojanapalli et al.,

5



Bi and Lavaei

2016b; Ge et al., 2016, 2017; Park et al., 2017; Zhang et al., 2018b; Li et al., 2019); 2)
checking whether a measurement operator A exists that makes a given point X a spurious
local solution for a given ground truth matrix M∗. The second proof technique was first
proposed in Zhang et al. (2019) and later extended in Molybog et al. (2020); Zhang and
Zhang (2020) for structured operators. We adopt the same technique in the current paper.

In the case when the absence of spurious local minima in the entire space cannot be
guaranteed, there are various approaches to handle the problem: 1) apply special initial-
ization schemes such as spectral methods to find an initial point sufficiently close to the
ground truth (Zheng and Lafferty, 2015; Candes et al., 2015; Bhojanapalli et al., 2016a;
Sun and Luo, 2016; Park et al., 2018); 2) use randomized algorithms such as stochastic
descent methods to escape saddle points or poor local minimizers (Ge et al., 2015); or 3)
initialize the algorithm randomly multiple times (Goldstein and Studer, 2018; Zhang and
Zhang, 2020).

3. Main Results

To obtain a powerful condition for guaranteeing the absence of spurious local minima in
problem (4), it is helpful to shed light on a distinguishing property of the function in (5)
for linear measurements that does not hold in the general case: the Hessian matrices at
all points are equal. If a general function f satisfies δ-RIP2r, (6) intuitively states that
the Hessian ∇2f(M) should be close to the quadratic form defined by an identity matrix,
at least when applied to rank-2r matrices. Hence, ∇2f(M) should change slowly when M
alters. The above discussion motivates the introduction of a new notion below.

Definition 6 A twice continuously differentiable function f : Rn×n → R satisfies the
bounded difference property of rank 2r for a constant κ ≥ 0, denoted as κ-BDP2r, if

|[∇2f(M)−∇2f(M ′)](K,L)| ≤ κ‖K‖F ‖L‖F (7)

for all matrices M,M ′,K, L ∈ Rn×n whose ranks are at most 2r.

It turns out that the RIP and BDP properties are not fully independent. Their rela-
tionship is summarized in the following theorems that will be proved in Section 4.

Theorem 7 If the function f satisfies δ-RIP2r, then it also satisfies 4δ-BDP2r.

Theorem 8 If the function f satisfies δ-RIP2r,4r, then it also satisfies 2δ-BDP2r.

The bounds in the above two theorems are tight. In Section 4, we will construct a class
of functions f that satisfy the δ-RIP2r property but do not satisfy the κ-BDP2r property
for some κ with κ/δ being arbitrarily close to 4. Similar examples can also be constructed
for Theorem 8.

The main results of this paper will be stated below, which are powerful criteria for the
global and local nonexistence of spurious local minima. The proofs are given in Section 5.
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Theorem 9 (Global Guarantee for r = 1) When r = 1, the problem (4) has no spu-
rious local minima if the function f satisfies the δ-RIP2 and κ-BDP2 properties for some
constants δ and κ such that

δ <
2− 6(1 +

√
2)κ

4 + 6(1 +
√

2)κ
.

Theorem 10 (Local Guarantee for r ≥ 1) Assume that the function f satisfies the δ-
RIP2r property for some constant δ such that

δ <

√
1− 3 + 2

√
2

4
ε2

with 0 < ε ≤ 2(
√

2 − 1). Then, the problem (4) has no spurious local minimizer X that
satisfies

‖XXT −M∗‖F ≤ ελr(M∗).

In the case of linear measurements and the quadratic loss, the function f satisfies the
κ-BDP2r property with κ = 0. Hence, Theorem 9 immediately recovers the result in Zhang
et al. (2019) stating that the problem (2) with r = 1 has no spurious local minima if the
quadratic form Q satisfies the δ-RIP2 property with δ < 1/2.

As a by-product, Theorem 10 also improves the existing local guarantees summarized
in Theorem 2 and Theorem 3 for certain linear cases. If r = 1, Theorem 10 can possibly
offer a region free of spurious local minima that is larger than the region obtained from
Theorem 2. The reason is that ε in Theorem 2 is capped at (

√
5− 1)/2, which is increased

to 2(
√

2− 1) in Theorem 10 (note that λr(M
∗) = ‖M∗‖F if r = 1). For an arbitrary rank,

Theorem 10 strengthens the result of Theorem 3 in terms of the order of the bound as a
function of ε, when ε is small.

Theorem 9 and Theorem 10 are even more powerful for functions f associated with
nonlinear measurements. At the end of Section 4 and in Section 6, we will offer such
examples for which the absence of spurious local minima can be certified by Theorem 9 or
Theorem 10, while the existing conditions in the literature fail to work.

4. RIP and BDP Properties

In this section, the relationship among the RIP2r, RIP2r,4r and BDP2r properties of a given
function f will be investigated. We will first prove Theorem 7 and Theorem 8, and then
show that the bounds in these theorems are tight. The following lemma will be needed,
which appears in Candès (2008); Bhojanapalli et al. (2016b); Li et al. (2019) under different
notations. We include a short proof here for completeness.

Lemma 11 If a quadratic form Q satisfies δ-RIP2r, then

|[Q](K,L)− 〈K,L〉| ≤ δ‖K‖F ‖L‖F

for all matrices K,L ∈ Rn×n with rank(K) ≤ r, rank(L) ≤ r.

7



Bi and Lavaei

Proof Without loss of generality, assume that ‖K‖F = ‖L‖F = 1. By the δ-RIP2r property
of Q, we have

(1− δ)‖K − L‖2F ≤ [Q](K − L,K − L) ≤ (1 + δ)‖K − L‖2F ,
(1− δ)‖K + L‖2F ≤ [Q](K + L,K + L) ≤ (1 + δ)‖K + L‖2F .

Taking the difference between the above two inequalities, one can obtain

4[Q](K,L) ≤ (1 + δ)‖K + L‖2F − (1− δ)‖K − L‖2F = 4δ + 4〈K,L〉,
−4[Q](K,L) ≤ (1 + δ)‖K − L‖2F − (1− δ)‖K + L‖2F = 4δ − 4〈K,L〉,

which proves the desired inequality.

Proof of Theorem 8 Let M and M ′ be two matrices of rank at most 2r. By the definition
of δ-RIP2r,4r of the function f , both ∇2f(M) and ∇2f(M ′) satisfy δ-RIP4r. After the
constant r in the statement of Lemma 11 is replaced by 2r, we obtain

|[∇2f(M)](K,L)− 〈K,L〉| ≤ δ‖K‖F ‖L‖F ,
|[∇2f(M ′)](K,L)− 〈K,L〉| ≤ δ‖K‖F ‖L‖F ,

for all matrices K,L ∈ Rn×n of rank at most 2r, which leads to (7) for κ = 2δ.

Proof of Theorem 7 We first prove that any quadratic form Q with δ-RIP2r satisfies

|[Q](K,L)− 〈K,L〉| ≤ 2δ‖K‖F ‖L‖F , (8)

for all matrices K,L ∈ Rn×n of rank at most 2r. Let K = UDV T be the singular value
decomposition of K. Write D = D1 +D2 in which D1 and D2 both have at most r nonzero
entries, and let K1 = UD1V

T and K2 = UD2V
T . Then, K = K1+K2, where rank(K1) ≤ r,

rank(K2) ≤ r and 〈K1,K2〉 = 0. We decompose L = L1 + L2 similarly. By Lemma 11, it
holds that

|[Q](K,L)− 〈K,L〉| ≤ |[Q](K1, L1)− 〈K1, L1〉|+ |[Q](K1, L2)− 〈K1, L2〉|
+ |[Q](K2, L1)− 〈K2, L1〉|+ |[Q](K2, L2)− 〈K2, L2〉|
≤ δ(‖K1‖F + ‖K2‖F )(‖L1‖F + ‖L2‖F )

≤ 2δ
√
‖K1‖2F + ‖K2‖2F

√
‖L1‖2F + ‖L2‖2F

= 2δ‖K‖F ‖L‖F .

The remaining proof is exactly the same as the proof of Theorem 8.

The inequality (8) is parallel to the square root lifting inequality (Cai et al., 2010) in the
compressed sensing problem. Our result can be regarded as a generalization of that result
to the low-rank matrix recovery problem.
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In what follows, we will show that the bounds in Theorem 7 and Theorem 8 are tight.
To this end, we will work on examples of function f with δ-RIP2r or δ-RIP4r for a small δ
whose Hessian has a large variation across different points. Consider an integer n ≥ 4 and
an integer r ≥ 1. Let

A1 =
1√
n

diag(a1, . . . , an)

with ai ∈ {−1, 1} whose exact value will be determined later. One can extend A1 to an
orthonormal basis A1, . . . , An2 of the space Rn×n. Define a linear operator A : Rn×n →
Rn2−1 by letting

A(M) = (〈A2,M〉, . . . , 〈An2 ,M〉).
Then, for every matrix M ∈ Rn×n, it holds that

‖A(M)‖2 = ‖M‖2F − (〈A1,M〉)2 ≤ ‖M‖2F .

Now, assume that M is a matrix with rank(M) ≤ 2r, and let σ1(M), . . . , σ2r(M) denote its
2r largest singular values. Observe that

|〈A1,M〉| ≤
1√
n

n∑
i=1

|Mii| ≤
1√
n

2r∑
i=1

σi(M) =

√
2r

n

√√√√ 2r∑
i=1

σ2i (M) =

√
2r

n
‖M‖F ,

which implies that

‖A(M)‖2 = ‖M‖2F − (〈A1,M〉)2 ≥
(

1− 2r

n

)
‖M‖2F .

Define a scaled linear operator Ā as

Ā(M) =

√
n

n− r
A(M), ∀M ∈ Rn×n.

Thus, the relation(
1− r

n− r

)
‖M‖2F ≤ ‖Ā(M)‖2 ≤

(
1 +

r

n− r

)
‖M‖2F (9)

holds for all M ∈ Rn×n with rank(M) ≤ 2r.
After choosing A1 = (1/

√
n)In in the above argument, let A be the resulting linear

operator and Q be the quadratic form in (3) that corresponds to the scaled linear operator
Ā. By the same argument, a similar linear operator A′ and the corresponding quadratic
form Q′ can be obtained after choosing

A′1 =
1√
n

diag(1, 1,−1,−1, 1, . . . , 1). (10)

Now, we select K = diag(1, 1, 0, 0, 0, . . . , 0) and L = diag(0, 0, 1, 1, 0, . . . , 0). Then,

|[Q−Q′](K,L)| = n

n− r
|〈A(K),A(L)〉 − 〈A′(K),A′(L)〉|

=
n

n− r
|−〈A1,K〉〈A1, L〉+ 〈A′1,K〉〈A′1, L〉|

=
4

n− r
‖K‖F ‖L‖F .

(11)

9
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In the case r = 1, it follows from (9) that both of the constructed quadratic forms Q and
Q′ satisfy δ-RIP2 with δ = 1/(n − 1). If one can find a twice continuously differentiable
function f satisfying δ-RIP2 such that

∇2f(M) = Q, ∇2f(M ′) = Q′

hold at two particular points M,M ′ ∈ Rn×n with rank(M) ≤ 2 and rank(M ′) ≤ 2, then by
(11) the function f cannot satisfy κ-BDP2 for κ < 4δ. Since the design of such function
is cumbersome, we will use a weaker result that serves the same purpose. This result, to
be formalized in Lemma 12, states that for every µ > 0, one can find a twice continuously
differentiable function f with (δ+µ)-RIP2 and two matrices M,M ′ ∈ Rn×n of rank at most
1 satisfying the following inequalities:

|[∇2f(M)−Q](K,L)| ≤ µ‖K‖F ‖L‖F ,
|[∇2f(M ′)−Q′](K,L)| ≤ µ‖K‖F ‖L‖F .

(12)

Combining (11) and (12) yields that

|[∇2f(M)−∇2f(M ′)](K,L)| ≤ (4δ + 2µ)‖K‖F ‖L‖F .

Therefore, the function f cannot satisfy the κ-BDP2 property for any κ < 4δ + 2µ. Since
µ can be made arbitrarily small, this shows that the constant 4δ in Theorem 7 cannot be
improved. Similarly, by choosing r = 2 instead of r = 1 and repeating the above argument,
one can show that the constant 2δ in Theorem 8 cannot be improved either.

Lemma 12 Consider two quadratic forms Q and Q′ satisfying the δ-RIP2r property. For
every µ > 0, there exists a twice continuously differentiable function f : Rn×n → R and
two matrices M,M ′ ∈ Rn×n with rank(M) ≤ 1 and rank(M ′) ≤ 1 such that f satisfies the
(δ + µ)-RIP2r property and that (12) holds for all K,L ∈ Rn×n.

Proof Given µ > 0, let f be given as

f(V ) =
1

2
[Q′](V, V ) +

1

2
H(‖V ‖2F )[∆](V, V ),

where ∆ = Q−Q′ and H : R→ R is defined as

H(t) =

{
0, if t ≤ 0,

exp(−1/tγ), if t > 0.

Here, γ ∈ (0, 1) is a constant that will be determined later. It is straightforward to verify
that H is twice continuously differentiable and

H ′(0) = H ′′(0) = 0, (13a)

|tH ′(t)| ≤ γ

e
, |t2H ′′(t)| ≤ 4γ

e
, ∀t ∈ R. (13b)

The basic idea behind the above construction of f is that when γ is chosen to be small,
the growth of the function H becomes so slow that it can be regarded as a constant when
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computing the Hessian of the above function f . As a result, the Hessian is approximately a
linear combination of two quadratic forms Q and Q′ with the δ-RIP2r property. Formally,
the Hessian ∇2f(V ) of f at a particular matrix V ∈ Rn×n, when applied to arbitrary
K,L ∈ Rn×n, is given by

[∇2f(V )](K,L) = 2H ′′(‖V ‖2F )[∆](V, V )〈V,K〉〈V,L〉+H ′(‖V ‖2F )[∆](V, V )〈K,L〉
+ 2H ′(‖V ‖2F )([∆](L, V )〈V,K〉+ [∆](K,V )〈V,L〉)
+ [Q′ +H(‖V ‖2F )∆](K,L).

(14)

By compactness, there exists a constant C > 0 such that

|[∆](A,B)| ≤ C‖A‖F ‖B‖F (15)

holds for all A,B ∈ Rn×n. We choose a sufficiently small γ such that 26γC/e ≤ µ. By
(13b), (14), (15) and the Cauchy-Schwartz inequality, we have

|[∇2f(V )−Q′ −H(‖V ‖2F )∆](K,L)| ≤ 13γC

e
‖K‖F ‖L‖F ≤

µ

2
‖K‖F ‖L‖F . (16)

To prove that the function f satisfies (δ + µ)-RIP2r, assume for now that K = L and
rank(K) ≤ 2r. The inequality 0 ≤ H(‖V ‖2F ) ≤ 1 and the δ-RIP2r property of Q and Q′
imply that

(1− δ)‖K‖2F ≤ [Q′ +H(‖V ‖2F )∆](K,K) ≤ (1 + δ)‖K‖2F .

By (16) and the above inequality, the function f satisfies the (δ + µ)-RIP2r property. To
prove the existence of M and M ′ satisfying (12), we select M ′ = 0 and

M = diag(s, 0, . . . , 0).

For any K,L ∈ Rn×n, it follows from (13a) and (14) that

[∇2f(M ′)−Q′](K,L) = 0. (17)

Moreover, (15) and (16) yield that

|[∇2f(M)−Q](K,L)| ≤ µ

2
‖K‖F ‖L‖F + |[Q′ +H(‖M‖2F )∆−Q](K,L)|

≤
(µ

2
+ (1−H(‖M‖2F ))C

)
‖K‖F ‖L‖F .

Since H(‖M‖2F )→ 1 as s→ +∞, (12) is satisfied as long as s is sufficiently large.

The above argument also provides examples of the function f whose corresponding
recovery problem (4) can be certified to have no spurious local minima via Theorem 9,
while the existing results in the literature fail to do so. Following the above construction,
choose n = 4, r = 1, and let

f̃(V ) =
1− λ

2
[Q′](V, V ) + λf(V ),

11
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for some λ ∈ [0, 1]. The Hessian can be written as

∇2f̃(V ) = (1− λ)Q′ + λ∇2f(V ). (18)

If λ > 0, the Hessian of f̃ is not a constant, and therefore the condition in Zhang et al.
(2019) cannot be applied. On the other hand, it follows from (17) that

[∇2f̃(0)](A′1, A
′
1) = [Q′](A′1, A′1) = 0,

for the matrix A′1 of rank 4 defined in (10). Thus, the function f̃ cannot satisfy the δ-RIP2,4

property for any δ ∈ [0, 1). This implies that the condition in Li et al. (2019) cannot be
applied either. In contrast, note that the quadratic form Q′ satisfies the 1/3-RIP2 property
and the function f satisfies the (1/3+µ)-RIP2 property. Therefore, it can be concluded from
(18) that the function f̃ also satisfies the (1/3 + µ)-RIP2 property. In light of Theorem 7,
f satisfies 4(1/3 + µ)-BDP2 and thus f ′ satisfies 4λ(1/3 + µ)-BDP2. Hence, Theorem 9
certifies the absence of spurious local minima as long as λ and µ jointly satisfy

1

3
+ µ <

2− 6(1 +
√

2)4λ(1/3 + µ)

4 + 6(1 +
√

2)4λ(1/3 + µ)
.

5. Proofs of Main Results

Our approach consists of two major steps. The first step is to find necessary conditions that
the function f with the δ-RIP2r and κ-BDP2r properties must satisfy if the corresponding
problem (4) has a local minimizer X such that XXT 6= M∗, where M∗ is the ground truth.
The second step is to develop certain conditions on δ and κ that rule out the satisfaction
of the above necessary condition.

Before proceeding with the proofs, we need to introduce some notations. Given two
matrices X,Z ∈ Rn×r, define

e = vec(XXT − ZZT ) ∈ Rn
2
,

and let X ∈ Rn2×nr be the matrix satisfying

X vecU = vec(XUT + UXT ), ∀U ∈ Rn×r.

5.1 Necessary Conditions for the Existence of Spurious Local Minima

As the first step, in the following lemma we obtain necessary conditions for the existence
of spurious local minima in the problem (4).

Lemma 13 Assume that the function f in the problem (4) satisfies the δ-RIP2r and κ-
BDP2r properties. If X is a local minimizer of (4) and Z is a global minimizer of (4) with
M∗ = ZZT , then there exists a symmetric matrix H ∈ Rn2×n2

such that the following three
conditions hold:

1. ‖XTHe‖ ≤ 2κ
√
λ1(XXT )‖e‖;

2. 2Ir ⊗matS(He) + XTHX � −2κ‖e‖Inr;

12
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3. H satisfies the δ-RIP2r property, i.e, for every matrix U ∈ Rn×n with rank(U) ≤ 2r,
it holds that

(1− δ)‖U‖2 ≤ UTHU ≤ (1 + δ)‖U‖2,

where U = vecU .

Proof Choose H to be the matrix satisfying

(vecK)TH vecL = [∇2f(XXT )](K,L),

for all K,L ∈ Rn×n. Condition 3 follows immediately from the δ-RIP2r property of the
function f . To prove the remaining two conditions, define g(Y ) = f(Y Y T ) and M = XXT .
Since X is a local minimizer of the function g(·), for every U ∈ Rn×r with U = vecU , the
first-order optimality condition implies that

0 = 〈∇g(X), U〉 = 〈∇f(M), XUT + UXT 〉. (19)

Define an auxiliary function h : Rn×n → R by letting

h(V ) = 〈∇f(V ), XUT + UXT 〉.

By the mean value theorem, there exists a matrix ξ on the segment between M and M∗

such that

[∇2f(ξ)](M −M∗, XUT + UXT ) = 〈∇h(ξ),M −M∗〉 = h(M)− h(M∗) = 0, (20)

in which the last equality follows from (19) and ∇f(M∗) = 0. Since rank(M) ≤ r and
rank(M∗) ≤ r, we have rank(ξ) ≤ 2r and rank(M −M∗) ≤ 2r. Applying the κ-BDP2r

property to the Hessian of f(·) at matrices M and ξ, together with (20), one can obtain

|eTHXU| = |[∇2f(M)](M −M∗, XUT + UXT )|
≤ κ‖M −M∗‖F ‖XUT + UXT ‖F
≤ 2κ‖e‖‖XUT ‖F

= 2κ‖e‖
√

tr(UXTXUT )

≤ 2κ‖e‖
√
λ1(XXT )‖U‖

Condition 1 can be proved by setting U = XTHe.

For every U ∈ Rn×r with U = vecU , the second-order optimality condition gives

0 ≤ [∇2g(X)](U,U) = [∇2f(M)](XUT + UXT , XUT + UXT ) + 2〈∇f(M), UUT 〉. (21)

The first term on the right-hand side can be equivalently written as (XU)TH(XU). A
similar argument can be made to conclude that there exists another matrix ξ′ on the segment

13
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between M and M∗ such that

〈∇f(M), UUT 〉 = 〈∇f(M)−∇f(M∗), UUT 〉
= [∇2f(ξ′)](M −M∗, UUT )

≤ [∇2f(M)](M −M∗, UUT ) + κ‖M −M∗‖F ‖UUT ‖F
= vec(UUT )He + κ‖e‖‖U‖2

=
1

2
(vecU)T vec((W +W T )U) + κ‖e‖‖U‖2

= UT (Ir ⊗matS(He))U + κ‖e‖‖U‖2, (22)

in which W ∈ Rn×n is the unique matrix satisfying vecW = He. Condition 2 can be
obtained by combining (21) and (22).

For given X,Z ∈ Rn×r and κ ≥ 0, one can construct an optimization problem based on
the conditions in Lemma 13 as follows:

min
δ,H

δ

s. t. ‖XTHe‖ ≤ a,
2Ir ⊗matS(He) + XTHX � −bInr,
H is symmetric and satisfies δ-RIP2r,

(23)

where

a = 2κ
√
λ1(XXT )‖e‖, b = 2κ‖e‖. (24)

Let δ(X,Z;κ) be the optimal value of (23). Assume that f in the original problem (4)
satisfies δ-RIP2r and κ-BDP2r. By Lemma 13, if X is a local minimizer of (4) and Z is
a global minimizer of (4) with M∗ = ZZT , then δ ≥ δ(X,Z;κ). As a result, by defining
δ∗(κ) as the optimal value of the optimization problem

min
X,Z∈Rn×r

δ(X,Z;κ) s. t. XXT 6= ZZT ,

the problem (4) is guaranteed to have no spurious local minima as long as δ < δ∗(κ).

The remaining task is to compute δ(X,Z;κ) and δ∗(κ). First, by the property of the
Schur complement, the first constraint in (23) can be equivalently written as[

Inr XTHe
(XTHe)T a2

]
� 0.

The major difficulty of solving (23) comes from the last constraint, since it is NP-hard
to verify whether a given quadratic form satisfies δ-RIP2r (Tillmann and Pfetsch, 2014).
Instead, we tighten the last constraint of (23) by requiring H to have a norm-preserving
property for all matrices instead of just for matrices with rank at most 2r, i.e.,

(1− δ)‖U‖2 ≤ UTHU ≤ (1 + δ)‖U‖2, ∀U ∈ Rn
2
,

14
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which leads to following semidefinite program:

min
δ,H

δ

s. t.

[
Inr XTHe

(XTHe)T a2

]
� 0,

2Ir ⊗matS(He) + XTHX � −bInr,
(1− δ)In2 � H � (1 + δ)In2 .

(25)

Similar to the case with linear measurements studied in Zhang et al. (2019), due to the
symmetry under orthogonal projections, the problems (23) and (25) turn out to have the
same optimal value. This result is a direct generalization of (Zhang et al., 2019, Theorem 8)
to the case with nonlinear measurements. See Appendix A for the proof.

Lemma 14 For given X,Z ∈ Rn×r and κ ≥ 0, the optimization problems (23) and (25)
have the same optimal value.

Even if the value of δ(X,Z;κ) for given X, Z and κ can now be efficiently calculated
by solving the semidefinite program (25), to further compute δ∗(κ), an analytical expres-
sion is still needed for δ(X,Z;κ). For our purpose, it is sufficient to find a lower bound
on δ(X,Z;κ). In the remainder of this section, as a last step to prove Theorem 9 and
Theorem 10, we will focus on the problem of lower bounding δ(X,Z;κ) and δ∗(κ). Before
digging into this problem, we shall first study the function δ(X,Z;κ) numerically to gain
some intuition.

5.2 Numerical Illustration

To numerically analyze δ(X,Z;κ), we select different values for κ, and in each case we
sample X and Z randomly by drawing each entry of these matrices independently from
the standard normal distribution and then solve the semidefinite program (25) to evaluate
δ(X,Z;κ). The empirical cumulative distributions of δ(X,Z;κ) from 5000 samples for n = 5
and different κ and rank r are given in Figure 1. It can be observed that when κ increases,
δ(X,Z;κ) becomes smaller and a worse bound is expected from finding the minimum value
δ∗(κ) of δ(X,Z;κ). On the other hand, δ(X,Z;κ) increases when r grows. For example,
in the case when κ = 0.05, all of the samples satisfy δ(X,Z;κ) ≥ 0.44 for rank r = 1,
δ(X,Z;κ) ≥ 0.51 for rank r = 2, and δ(X,Z;κ) ≥ 0.64 for rank r = 3. This observation
suggests that the stochastic gradient method may perform better in the higher-rank cases,
since its trajectory during the iteration is less likely to be close to a spurious local minimizer,
and it will be easier to escape even if the trajectory encounters a spurious solution X that
is not detected in the above sampling process.

5.3 Global Guarantee for the Rank-1 Case

When r = 1, X and Z reduce to vectors and henceforth will be denoted as x and z with

e = x⊗ x− z ⊗ z, Xu = x⊗ u+ u⊗ x,
√
λ1(xxT ) = ‖x‖.
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Moreover,

‖Xu‖2 = 2‖x‖2‖u‖2 + 2(xTu)2, ∀u ∈ Rn. (26)

Given two vectors x, z ∈ Rn with x 6= 0 and xxT 6= zzT , one can find a unit vector
w ∈ Rn such that w is orthogonal to x and z = c1x+ c2w for some scalars c1 and c2. Then,

e = Xỹ − c22(w ⊗ w),

in which

ỹ =
1− c21

2
x− c1c2w.

Note that Xỹ is orthogonal to w ⊗ w. Furthermore, since ỹ 6= 0 by xxT 6= zzT and thus
Xỹ 6= 0 by (26), one can rescale ỹ into ŷ such that ‖Xŷ‖ = 1 and

e = ‖e‖(
√

1− α2Xŷ − α(w ⊗ w)), (27)

with

α :=
c22
‖e‖

=
‖z‖2 − (xT z/‖x‖)2

‖e‖
. (28)

In addition, (26) also implies

‖ŷ‖ ≤ ‖Xŷ‖√
2‖x‖

=
1√

2‖x‖
. (29)

To proceed with our proof, we will need the next lemma that studies the eigenvalues of
some structured rank-2 matrices.

Lemma 15 (Zhang et al. (2019)) Let u and v be two vectors of the same dimension.
The eigenvalues of the matrix uvT + vuT can take only three possible values

‖u‖‖v‖(1 + cos θ), −‖u‖‖v‖(1− cos θ), 0,

where θ is the angle between u and v.

Lemma 16 Let x, z ∈ Rn with xxT 6= zzT . The optimal value δ(x, z;κ) of (25) satisfies

δ(x, z;κ) ≥ 1− η0(x, z)− 2(1 +
√

2)κ

1 + η0(x, z) + 2(1 +
√

2)κ
,

in which

η0(x, z) =


1−
√

1− α2

1 +
√

1− α2
, if β ≥ α

1 +
√

1− α2
,

β(β − α)

βα− 1
, if β ≤ α

1 +
√

1− α2
,

with α defined in (28)1 and β = ‖x‖2/‖e‖.

1. When x = 0, α is defined to be ‖z‖2/‖e‖.
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(a) κ = 0 (b) κ = 0.05

(c) κ = 0.1 (d) κ = 0.2

Figure 1: The empirical probability of δ(X,Z;κ) ≤ δ0 for randomly generated X and Z
matrices with n = 5 and different κ and rank r.

Proof Define η(x, z;κ) to be the optimal value of the following optimization problem:

max
η,H

η

s. t.

[
Inr XTHe

(XTHe)T a2

]
� 0,

2 matS(He) + XTX � −bInr,
ηIn2 � H � In2 .

(30)

It can be verified that

η(x, z;κ) ≥ 1− δ(x, z;κ)

1 + δ(x, z;κ)
, (31)

because given any feasible solution (δ,H) to (25), the point

(
1− δ
1 + δ

,
1

1 + δ
H

)
17
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is also a feasible solution to (30). The reason is that the first and last constraints in (30)
naturally hold while the second constraint is satisfied due to

2 matS

(
1

1 + δ
He

)
+ XTX � 1

1 + δ
(2 matS(He) + XTHX) � − b

1 + δ
Inr � −bInr.

Therefore, to find a lower bound on δ(x, z;κ), we only need to find an upper bound on
η(x, z;κ).

The dual problem of (30) can be written as

min
U1,U2,V,G,λ,y

tr(U2) + 〈XTX + bIn, V 〉+ a2λ+ tr(G),

s. t. tr(U1) = 1,

(Xy − v)eT + e(Xy − v)T = U1 − U2,[
G −y
−yT λ

]
� 0,

U1 � 0, U2 � 0, V � 0, v = vecV.

(32)

By weak duality, the dual objective value associated with any feasible solution to the dual
problem (32) is an upper bound on η(x, z;κ).

In the case when x 6= 0, we fix a constant γ ∈ [0, α] and choose

y =

√
1− γ2
‖e‖

ŷ, v =
γ

‖e‖
(w ⊗ w),

where ŷ and w are the vectors defined before (27). Since ‖Xŷ‖ = 1, ‖w ⊗ w‖ = 1 and Xŷ
is orthogonal to w ⊗ w, it holds that

‖Xy − v‖ =
1

‖e‖
.

Combined with (27), one can obtain

eT (Xy − v) = ψ(γ),

where ψ(γ) is given by

ψ(γ) = γα+
√

1− γ2
√

1− α2.

Now, define
M = (Xy − v)eT + e(Xy − v)T

and decompose
M = [M ]+ − [M ]−,

in which both [M ]+ � 0 and [M ]− � 0. Let θ be the angle between e and Xy − v. By
Lemma 15, it holds that

tr([M ]+) = ‖e‖‖Xy − v‖(1 + cos θ) = 1 + ψ(γ),

tr([M ]−) = ‖e‖‖Xy − v‖(1− cos θ) = 1− ψ(γ).
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Then, it is routine to verify that

U∗1 =
[M ]+

tr([M ]+)
, U∗2 =

[M ]−
tr([M ]+)

,

v∗ =
v

tr([M ]+)
, G∗ =

1

λ∗
y∗y∗T

λ∗ =
‖y∗‖
a

, y∗ =
y

tr([M ]+)

forms a feasible solution to the dual problem (32) whose objective value is equal to

tr([M ]−) + 〈XTX + bIn, V 〉+ 2a‖y‖
tr([M ]+)

. (33)

By (26) and (29), one can write

〈XTX + bIn, V 〉 =
γ

‖e‖
(‖Xw‖2 + b) =

γ

‖e‖
(2‖x‖2 + b) = 2(β + κ)γ, (34)

2a‖y‖ ≤ 2a‖ŷ‖
‖e‖

≤ 2
√

2κ, (35)

where a and b are defined in (24). Substituting (34) and (35) into (33) yields that

η(x, z;κ) ≤ Ψ(γ) + 2(1 +
√

2)κ,

where

Ψ(γ) =
2βγ + 1− ψ(γ)

1 + ψ(γ)
.

A simple calculation shows that the function Ψ(γ) has at most one stationary point over
the interval (0, α) and

min
0≤γ≤α

Ψ(γ) = η0(x, z).

In the case when x = 0, we have η0(x, z) = 0, and

U1 =
eeT

‖e‖2
, U2 = 0, V =

zzT

2‖e‖2
,

G = 0, λ = 0, y = 0

forms a feasible solution to the dual problem (32), which implies that

η(x, z, κ) ≤ 〈bIn, V 〉 = κ.

In either case, it holds that

η(x, z;κ) ≤ η0(x, z) + 2(1 +
√

2)κ,

which gives the desired result after combining it with (31).
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Proof of Theorem 9 By Lemma 14 and the discussion after Lemma 13, we only need to
show that

δ(x, z;κ) ≥ 2− 6(1 +
√

2)κ

4 + 6(1 +
√

2)κ
, (36)

for all x, z ∈ Rn with xxT 6= zzT . Similarly to the approach used in proof of (Zhang et al.,
2019, Theorem 3), it can be verified that the function η0(x, z) defined in the statement of
Lemma 16 has the maximum value 1/3 that is attained by any two vectors x and z that
are orthogonal to each other such that ‖x‖/‖z‖ = 1/2. Consequently, (36) holds in light of
Lemma 16.

5.4 Local Guarantee for the Rank-r Case

The key step in the proof of Theorem 9 is to derive a closed-form expression serving as a
lower bound on δ(X,Z;κ). Similar to the idea used in Zhang and Zhang (2020), we need to
first simplify δ(X,Z;κ) for the higher-rank cases by removing the constraint corresponding
to the second-order optimality condition in (25). The first step is to establish the following
lemma that is similar to Lemma 13 but ignores the second-order condition.

Lemma 17 Assume that the function f in the problem (4) satisfies the δ-RIP2r property.
If X is a local minimizer of (4) and Z is a global minimizer of (4) with M∗ = ZZT , then
there exists a symmetric matrix H ∈ Rn2×n2

such that the following two conditions hold:

1. XTHe = 0;

2. H satisfies the δ-RIP2r property, i.e, for every matrix U ∈ Rn×n with rank(U) ≤ 2r,
it holds that

(1− δ)‖U‖2 ≤ UTHU ≤ (1 + δ)‖U‖2,

where U = vecU .

Proof Following the proof of Lemma 13 but using a different H that will be given below,
we arrive at a matrix ξ ∈ Rn×n satisfying rank(ξ) ≤ 2r and (20). Choose H to be the
matrix satisfying

(vecK)TH vecL = [∇2f(ξ)](K,L),

for all K,L ∈ Rn×n. Then, (20) implies that eTHXU = 0, which further implies Condition
1 since U is arbitrary. Condition 2 immediately follows from the δ-RIP2r property of f .

For given X,Z ∈ Rn×r, one can similarly construct an optimization problem based on
the conditions in Lemma 17 as follows:

min
δ,H

δ

s. t. XTHe = 0,

H is symmetric and satisfies δ-RIP2r,
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whose optimal value is the same as that of the following semidefinite program by an argu-
ment similar to Lemma 14:

min
δ,H

δ

s. t. XTHe = 0,

(1− δ)In2 � H � (1 + δ)In2 .

(37)

Define δf (X,Z) to be the optimal value of the above problem. Then, the problem (4) has
no spurious local minima if the function f satisfies δ-RIP2r such that δ < δf (X,Z) for all
X,Z ∈ Rn×r with XXT 6= ZZT . Unfortunately, this argument cannot lead to a global
guarantee since δf (0, Z) = 0 for every Z ∈ Rn×r corresponding to H = In2 . Instead, we
will turn to local guarantees on the region of all X ∈ Rn×r satisfying

‖XXT −M∗‖F ≤ ελr(M∗) (38)

and prove Theorem 10 by further lower bounding δf (X,Z).

One important difference between the rank-1 and higher-rank cases is that in the latter
there are infinitely many matrices X ∈ Rn×r that produce the same value for the matrix
XXT . In the proof of Theorem 10, the matrix X is normalized by replacing it with another
matrix X̃ with X̃TZ � 0 while keeping XXT = X̃X̃T . The reason for this normaliza-
tion operation will be explained in the following lemma, which essentially says that after
normalization X and Z cannot be too far away from each other if XXT and ZZT are close.

Lemma 18 (Bhojanapalli et al. (2016b)) Let X,Z ∈ Rn×r be two arbitrary matrices
such that ZTX = XTZ is a positive semidefinite matrix. Then,

λr(ZZ
T )‖Z −X‖2F ≤

1

2(
√

2− 1)
‖ZZT −XXT ‖2F .

Proof of Theorem 10 Let Z ∈ Rn×r be a global minimizer of (4) with ZZT = M∗.
To prove by contradiction, assume that there exists a spurious local minimizer X ∈ Rn×r
satisfying XXT 6= ZZT and (38). Let XTZ = UDV T be the singular value decomposition
of XTZ, and define the orthogonal matrix R = UV T . Therefore, the matrix

(XR)TZ = V UTUDV T = V DV T � 0.

Furthermore, it is straightforward to verify that XR is also a spurious local minimizer
satisfying (38), so δ ≥ δf (XR,Z). On the other hand, applying Lemma 19 (to be stated
below) on the local minimizer XR and the global minimizer Z gives rise to the inequality

δf (XR,Z) ≥

√
1− 3 + 2

√
2

4
ε2,

which is a contradiction.
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Lemma 19 Let X,Z ∈ Rn×r such that M∗ = ZZT , XXT 6= ZZT , XTZ is a positive
semidefinite matrix, and (38) is satisfied for some ε ∈ (0, 2(

√
2− 1)]. Then,

δf (X,Z) ≥

√
1− 3 + 2

√
2

4
ε2.

Proof The statement is obviously true when λr(M
∗) = 0. If λr(M

∗) > 0, by the Wielandt-
Hoffman theorem (see Wilkinson (1970)), one can write

|λr(XXT )− λr(M∗)| ≤ ‖XXT −M∗‖F ≤ ελr(M∗),

which implies that

λr(XX
T ) ≥ (1− ε)λr(M∗) > 0. (39)

Decompose Z as Z = c1X + c2W for some scalars c1 and c2, where W ∈ Rn×r is a
matrix satisfying ‖W‖F = 1 and 〈X,W 〉 = 0. Then,

XXT − ZZT = (1− c21)XXT − c1c2(XW T +WXT )− c22WW T .

We then choose

Y =
1− c21

2
X − c1c2W, y = vecY. (40)

Since Y can be written as a linear combination of X and Z while XTZ is symmetric by
assumption, XTY is also symmetric and hence tr(XTY )2 ≥ 0. Now,

‖Xy‖2 = ‖XY T + Y XT ‖2F
= 2 tr(XTXY TY ) + tr(XTY )2 + tr(Y TX)2

≥ 2 tr(XTXY TY )

≥ 2λr(X
TX) tr(Y TY )

= 2λr(XX
T )‖y‖2.

Note that (40) and XXT 6= ZZT imply that y 6= 0, which together with (39) and the above
inequality further concludes that Xy 6= 0. Moreover,

‖e−Xy‖ = ‖XXT − ZZT −XY T − Y XT ‖F = c22‖WW T ‖F ≤ c22,
‖X − Z‖2F = (1− c1)2‖X‖2F + c22 ≥ c22.

Let θ be the angle between e and Xy. It follows from Lemma 18 that

sin θ ≤ ‖e−Xy‖
‖e‖

≤
‖X − Z‖2F

‖XXT −M∗‖F
≤ ‖XXT −M∗‖F

2(
√

2− 1)λr(M∗)
≤ ε

2(
√

2− 1)
≤ 1.

Therefore, θ < π/2 and

cos θ ≥

√
1− 3 + 2

√
2

4
ε2. (41)
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Define ηf (X,Z) as the optimal value of the optimization problem

max
η,H

η

s. t. XTHe = 0,

ηIn2 � H � In2 .

(42)

Similar to the proof of Lemma 16, it holds that

ηf (X,Z) ≥
1− δf (X,Z)

1 + δf (X,Z)
, (43)

and it is sufficient to upper bound ηf (X,Z) through finding a feasible solution to the dual
problem of (42) given by

min
U1,U2,y

tr(U2),

s. t. tr(U1) = 1,

(Xy)eT + e(Xy)T = U1 − U2,

U1 � 0, U2 � 0.

(44)

Let

M = (Xy)eT + e(Xy)T ,

in which y is defined by (40). The matrix M can be decomposed as

M = [M ]+ − [M ]−,

where [M ]+ � 0 and [M ]− � 0. By Lemma 15,

tr([M ]+) = ‖e‖‖Xy‖(1 + cos θ),

tr([M ]−) = ‖e‖‖Xy‖(1− cos θ).

Therefore,

U∗1 =
[M ]+

tr([M ]+)
, U∗2 =

[M ]−
tr([M ]+)

, y∗ =
y

tr([M ]+)

form a feasible solution to the dual problem (44), which implies that

ηf (X,Z) ≤ tr([M ]−)

tr([M ]+)
=

1− cos θ

1 + cos θ
.

This gives the desired result after combining it with (41) and (43).
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6. Application: 1-bit Matrix Completion

To demonstrate the effectiveness of the developed conditions for the absence of spurious so-
lutions, in this section we will study the 1-bit matrix completion problem. This is a low-rank
matrix recovery problem with nonlinear measurements that naturally arises in applications
such as recommendation systems in which each user provides binary (like/dislike) observa-
tions (see Davenport et al. (2014); Ghadermarzy et al. (2019)). In this problem, there is an
unknown ground truth matrix M∗ ∈ Rn×n with M∗ � 0 and rank(M∗) = r. One is allowed
to take independent measurements on each entry M∗ij , where each measurement value is a
binary random variable whose distribution is given by

Yij =

{
1 with probability σ(M∗ij),

0 with probability 1− σ(M∗ij).

Here, σ(x) is commonly chosen to be the sigmoid function ex/(ex + 1). Note that M∗ij is
an arbitrary real number while the measurements Yij are restricted to the binary choices 0
and 1. After a large number of measurements are taken, let yij be the percentage of the
measurements on the (i, j)th entry that are equal to 1, for every i, j ∈ {1, . . . , n}. To recover
the ground truth matrix, consider its maximum likelihood estimator. The log-likelihood
function is given by

n∑
i=1

n∑
j=1

(yij log(σ(Mij)) + (1− yij) log(1− σ(Mij))) =
n∑
i=1

n∑
j=1

(yijMij − log(1 + eMij )).

Therefore, the 1-bit matrix completion problem can be formulated as an optimization prob-
lem in the form (4) with

f(M) = −
n∑
i=1

n∑
j=1

(yijMij − log(1 + eMij )).

Our goal is to use Theorem 10 to provide a local guarantee for the absence of spurious
local minima for the above problem by showing that there is no spurious local minimizer
X ∈ Rn×r such that XXT ∈ B̄(M∗, R), where

B̄(M∗, R) = {M ∈ Rn×n|‖M −M∗‖F ≤ R}.

Direct computation shows that

[∇2f(M)](K,L) =
n∑
i=1

n∑
j=1

σ′(Mij)KijLij , ∀M,K,L ∈ Rn×n. (45)

For each entry M∗ij , define

M∗ij = max{|M∗ij | −R, 0}, M
∗
ij = |M∗ij |+R.

Since σ′(x) is an even function that is decreasing on the region x ≥ 0, if we let

m1 = σ′
(

min
i,j

M∗ij

)
, m2 = σ′

(
max
i,j

M
∗
ij

)
,
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(a) n = 20, r = 2 (b) n = 20, r = 10

(c) n = 100, r = 2 (d) n = 100, r = 10

Figure 2: The empirical distribution of the radius R of the neighborhood B̄(M∗, R) that is
guaranteed to be free of spurious local minima due to Theorem 10, for randomly
generated ground truth matrices M∗ with different sizes n and ranks r.

then (45) implies that

m2‖K‖2F ≤ [∇2f(M)](K,K) ≤ m1‖K‖2F , ∀M ∈ B̄(M∗, R), K ∈ Rn×n.

The above inequality shows that γf(·) satisfies δ-RIP2r on the region B̄(M∗, R) with

γ =
2

m1 +m2
, δ =

m1 −m2

m1 +m2
.

Therefore, by Theorem 10, there is no spurious local minimizer X satisfying XXT ∈
B̄(M∗, R) as long as R is sufficiently small to satisfy the inequality

m1 −m2

m1 +m2
<

√
1− 3 + 2

√
2

4

(
R

λr(M∗)

)2

. (46)

In the r = 1 case, if we let

m3 = max
i,j

(σ′(M∗ij)− σ′(M
∗
ij)),
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then (45) also implies that

|[∇2f(M)−∇2f(M ′)](K,L)| ≤ m3

n∑
i=1

n∑
j=1

|KijLij |

≤ m3‖K‖F ‖L‖F , ∀M,M ′ ∈ B̄(M∗, R), K, L ∈ Rn×n,

so γf(·) satisfies κ-BDP2 on the region B̄(M∗, R) with κ = γm3, and then Theorem 9 can
be applied similarly to obtain a possibly stronger result.

To illustrate the superiority of our result over previous ones, consider a simple special
case in which r = 2 and

M∗ = diag(2, 2, 0, . . . , 0).

In this case, the inequality (45) becomes

σ′(2)‖K‖2F ≤ [∇2f(M∗)] ≤ σ′(0)‖K‖2F ,

which implies that γ∇2f(M∗) satisfies the δ-RIP4 property for

γ =
2

σ′(0) + σ′(2)
, δ =

σ′(0)− σ′(2)

σ′(0) + σ′(2)
≈ 0.41 > 1/5.

In addition, it can be observed that the above choice of γ is the best to minimize δ. As a
result, the existing bound given in Li et al. (2019) cannot certify the absence of spurious
local minima in the region B̄(M∗, R) no matter how small R is. The reason is that the
function f(·) (after scaling) cannot satisfy the δ-RIP4 property in any local neighborhood
of M∗. On the other hand, the above discussion based on our Theorem 10 shows that the
problem has no spurious local minima in B̄(M∗, R) as long as R satisfies (46). Solving the
inequality (46) gives R < 1.14.

For an arbitrary ground truth matrix M∗, one can perform a binary search to find the
largest R such that the inequality (46) is satisfied and thus conclude that the problem has
no spurious local minima in the neighborhood B̄(M∗, R). For different sizes n and ranks
r, Figure 2 plots the empirical distribution of the radius R of such neighborhood for 104

random samples of M∗ = ZZT in which each entry of Z is independently generated from
the normal distribution with mean 0 and standard deviation 0.1.

7. Conclusion

In this paper, we first propose the bounded difference property (BDP) in order to study
the symmetric low-rank matrix recovery problem with nonlinear measurements. The rela-
tionship between BDP and RIP is thoroughly investigated. Then, two novel criteria for the
local and global nonexistence of spurious local minima are proposed. It is shown that the
developed criteria are superior to the existing conditions relying solely on RIP. In particular,
this work offers the first result in the literature on the nonexistence of spurious solutions in
a local region for the low-rank matrix recovery problems with nonlinear measurements.
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Appendix A. Proof of Lemma 14

Let OPT(X,Z) denote the optimal value of the optimization problem

min
δ,H

δ

s. t. ‖XTHe‖ ≤ a,
2Ir ⊗matS(He) + XTHX � −bInr,
H is symmetric and satisfies δ-RIP2r,

(47)

and LMI(X,Z) denote the optimal value of the optimization problem

min
δ,H

δ

s. t.

[
Inr XTHe

(XTHe)T a2

]
� 0,

2Ir ⊗matS(He) + XTHX � −bInr,
(1− δ)In2 � H � (1 + δ)In2 .

(48)

As mentioned in Section 5, the first constraint in (47) and the first constraint in (48) are
interchangeable. Our goal is to prove that OPT(X,Z) = LMI(X,Z) for given X,Z ∈ Rn×r.
Let (v1, . . . , vn) be an orthogonal basis of Rn such that (v1, . . . , vd) spans the column spaces
of both X and Z. Note that d ≤ 2r. Let P ∈ Rn×d be the matrix with the columns
(v1, . . . , vd) and P⊥ ∈ Rn×(n−d) be the matrix with the columns (vd+1, . . . , vn). Then,

P TP = Id, P T⊥P⊥ = In−d, P T⊥P = 0, P TP⊥ = 0,

PP T + P⊥P
T
⊥ = In, PP TX = X, PP TZ = Z.

Define P = P ⊗ P . Consider the auxiliary optimization problem

min
δ,H

δ

s. t.

[
Inr XTHe

(XTHe)T a2

]
� 0,

2Ir ⊗matS(He) + XTHX � −bInr,
(1− δ)Id2 � PTHP � (1 + δ)Id2 ,

(49)

and denote its optimal value as the function LMI(X,Z). Given an arbitrary symmetric
matrix H ∈ Rn2×n2

, if H satisfies the last constraint in (48), then it obviously satisfies δ-
RIP2r and subsequently the last constraint in (47). On the other hand, if H satisfies the last
constraint in (47), for every matrix Y ∈ Rd×d with Y = vecY , since rank(PY P T ) ≤ d ≤ 2r
and vec(PY P T ) = PY, by δ-RIP2r property, one arrives at

(1− δ)‖Y‖2 = (1− δ)‖PY‖2 ≤ (PY)THPY ≤ (1 + δ)‖PY‖2 = (1 + δ)‖Y‖2,

which implies that H satisfies the last constraint in (49). The above discussion implies that

LMI(X,Z) ≥ OPT(X,Z) ≥ LMI(X,Z).
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Let
X̂ = P TX, Ẑ = P TZ.

Lemma 21 and Lemma 22 to be stated later will show that

LMI(X,Z) ≤ LMI(X̂, Ẑ) ≤ LMI(X,Z),

which completes the proof of Lemma 14.
Before stating Lemma 21 and Lemma 22 that were needed in the proof of Lemma 14,

we should first state a preliminary result below.

Lemma 20 Define ê and X̂ in the same way as e and X, except that X and Z are replaced
by X̂ and Ẑ, respectively. Then, it holds that

e = Pê,

X(Ir ⊗ P ) = PX̂,

PTX = X̂(Ir ⊗ P )T .

Proof Observe that

e = vec(XXT − ZZT ) = vec(P (X̂X̂T − ẐẐT )P T ) = Pê,

X(Ir ⊗ P ) vec Û = X vec(PÛ) = vec(XÛTP T + PÛXT )

= vec(P (X̂ÛT + ÛX̂T )P T ) = PX̂ vec Û ,

X̂(Ir ⊗ P )T vecU = X̂ vec(P TU) = vec(X̂UTP + P TUX̂T )

= vec(P T (XUT + UXT )P ) = PTX vecU,

where U ∈ Rn×r and Û ∈ Rd×r are arbitrary matrices.

Lemma 21 The inequality LMI(X̂, Ẑ) ≥ LMI(X,Z) holds.

Proof Let (δ, Ĥ) be an arbitrary feasible solution to the optimization problem defining
LMI(X̂, Ẑ) with δ ≤ 1. It is desirable to show that (δ,H) with

H = PĤPT + (In2 −PPT )

is a feasible solution to the optimization problem defining LMI(X,Z), which directly proves
the lemma. To this end, notice that

H− (1− δ)In2 = P(Ĥ− (1− δ)Id2)PT + δ(In2 −PPT ),

which is positive semidefinite because

In2 −PPT = (PP T + P⊥P
T
⊥ )⊗ (PP T + P⊥P

T
⊥ )− (PP T )⊗ (PP T )

= (PP T )⊗ (P⊥P
T
⊥ ) + (P⊥P

T
⊥ )⊗ (PP T ) + (P⊥P

T
⊥ )⊗ (P⊥P

T
⊥ ) � 0.
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Similarly,

H− (1 + δ)In2 � 0,

and therefore the last constraint in (48) is satisfied and H is always positive semidefinite.
Next, since

XTHe = XTHPê = XTPĤê = (Ir ⊗ P )X̂T Ĥê,

we have

‖XTHe‖2 = (X̂T Ĥê)T (Ir ⊗ P T )(Ir ⊗ P )(X̂T Ĥê) = ‖X̂T Ĥê‖2,

and thus the first constraint in (48) is satisfied. Finally, by letting W ∈ Rd×d be the vector
satisfying vecW = Ĥê, one can write

vec(PWP T ) = P vecW = PĤê.

Hence,

2Ir ⊗matS(He) = 2Ir ⊗matS(HPê) = 2Ir ⊗matS(PĤê) = Ir ⊗ (P (W +W T )P T )

= 2Ir ⊗ (P matS(Ĥê)P T ) = 2(Ir ⊗ P )(Ir ⊗matS(Ĥê))(Ir ⊗ P )T .

In addition,

XTHX(Ir ⊗ P ) = XTHPX̂ = XTPĤX̂ = (Ir ⊗ P )X̂T ĤX̂.

Therefore, by defining

S := 2Ir ⊗matS(He) + XTHX + bInr,

we have

(Ir ⊗ P )TS(Ir ⊗ P ) = 2Ir ⊗matS(Ĥê) + X̂T ĤX̂ + bIdr � 0,

(Ir ⊗ P⊥)TS(Ir ⊗ P⊥) = (Ir ⊗ P⊥)TXTHX(Ir ⊗ P⊥) + bI(n−d)r � 0,

(Ir ⊗ P⊥)TS(Ir ⊗ P ) = 0.

Since the columns of Ir ⊗ P and Ir ⊗ P⊥ form a basis for Rnr, the above inequalities imply
that S is positive semidefinite, and thus the second constraint in (48) is satisfied.

Lemma 22 The inequality LMI(X,Z) ≥ LMI(X̂, Ẑ) holds.
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Proof The dual problem of the optimization problem defining LMI(X̂, Ẑ) can be expressed
as

max
Û1,Û2,V̂ ,Ĝ,λ̂,ŷ

tr(Û1 − Û2)− tr(Ĝ)− a2λ̂− b tr(V̂ )

s. t. tr(Û1 + Û2) = 1,
r∑
j=1

(X̂ŷ − vec V̂j,j)ê
T +

r∑
j=1

ê(X̂ŷ − vec V̂j,j)
T − X̂V̂ X̂T = Û1 − Û2,[

Ĝ −ŷ
−ŷT λ̂

]
� 0,

Û1 � 0, Û2 � 0, V̂ =

V̂1,1 · · · V̂r,1
...

. . .
...

V̂ T
r,1 · · · V̂r,r

 � 0.

(50)

Since

Û1 =
1

2d2
Id2 −

µ

2
M, Û2 =

1

2d2
Id2 +

µ

2
M, V̂ = µIdr, Ĝ = Idr, λ̂ = 1, ŷ = 0,

where

M = r((vec Id)ê
T + ê(vec Id)

T ) + X̂X̂T ,

is a strict feasible solution to the above dual problem (50) as long as µ > 0 is sufficiently
small, Slater’s condition implies that strong duality holds for the optimization problem
defining LMI(X̂, Ẑ). Therefore, we only need to prove that the optimal value of (50) is
smaller than or equal to the optimal value of the dual of the optimization problem defining
LMI(X,Z) given by:

max
U1,U2,V,G,λ,y

tr(U1 − U2)− tr(G)− a2λ− b tr(V )

s. t. tr(U1 + U2) = 1,
r∑
j=1

(Xy − vecVj,j)e
T +

r∑
j=1

e(Xy − vecVj,j)
T −XVXT = P(U1 − U2)P

T ,

[
G −y
−yT λ

]
� 0,

U1 � 0, U2 � 0, V =

V1,1 · · · Vr,1
...

. . .
...

V T
r,1 · · · Vr,r

 � 0.

(51)
The above claim can be verified by noting that given any feasible solution

(Û1, Û2, V̂ , Ĝ, λ̂, ŷ)
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to (50), the matrices

U1 = Û1, U2 = Û2, V = (Ir ⊗ P )V̂ (Ir ⊗ P )T ,[
G −y
−yT λ

]
=

[
Ir ⊗ P 0

0 1

] [
Ĝ −ŷ
−ŷT λ̂

] [
(Ir ⊗ P )T 0

0 1

]
form a feasible solution to (51), and both solutions have the same optimal objective value.
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