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Abstract— This paper is concerned with the robust quadratic
regression problem, where the goal is to find the unknown
parameters (state) of a system modeled by nonconvex quadratic
equations based on observational data. In this problem, a
sparse subset of equations are subject to errors (noise values)
of arbitrary magnitudes. We propose two techniques based
on conic optimization to address this problem. The first one
is a penalized conic relaxation, whereas the second one is a
more complex iterative conic optimization equipped with a
hard thresholding operator. We derive a deterministic bound
for the penalized conic relaxation to quantify how many bad
measurements the algorithm can tolerate without producing
a nonzero estimation error. This bound is then analyzed for
Gaussian systems, and it is proved that the proposed method
allows up to a square root of the total number of measurements
to be grossly erroneous. If the number of measurements is
sufficiently large, we show that the iterative conic optimization
method recovers the unknown state precisely even when up
to a constant fraction of equations are arbitrarily wrong in
the Gaussian case. The efficacy of the developed methods is
demonstrated on synthetic data and a European power grid.

I. INTRODUCTION

Nonlinear regression aims to find the parameters of a given
model based on observational data. One may assume the
existence of a parametrized function f(x;a) defined over
the set of all possible models x ∈ X and all possible inputs
a ∈ A, where the goal is to estimate the true model given a
set of imperfect measurements yi’s:

yi = f(x,ai) + ηi, ∀i ∈ {1, ...,m}

In this formulation, unknown error vector η could be the
measurement noise with modest values. However, a more
drastic scenario corresponds to the case where the random
vector η is sparse and its nonzero entries are allowed to
be arbitrarily large. Under this circumstance, some a priori
information about the probability distribution of the sparse
vector η may be available, in addition to an upper bound
on the cardinality of η. This important problem is referred
to as robust regression and appears in real-world situations
when some observations, named outliers, are completely
wrong in an unpredictable way. This could occur during
an image acquisition with several corrupted pixels, or result
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from communication issues during data transmission for
sensor networks. Such problems arise in different domains
of application and have been studied in the literature. In
the context of electric power grid, the regression problem
is known as state estimation, where the goal is to find the
operating point of the system based on the voltages signals
measured at buses and power signals measured over lines
and at buses [1]–[3]. Outliers in this case are associated with
faulty sensors, cyber attacks, or regional data manipulation
to impact the electricity market [2], [4].

There are several classical works on robust regression and
outliers detection. The book [5] offers an overview of many
fundamental results in this area dating back to 1887 when
Edgeworth proposed the least absolute values regression
estimator. Modern techniques for handling sparse errors of
arbitrary magnitudes vary with respect to different features:
statistical properties of the error, class of the regression
model f(x;a), set of possible true models, type of theoret-
ical guarantees, and characteristics of the adversary model
generating errors [6]–[10]. There is a plethora of papers
on this topic for the well-known linear regression problem
[11]–[15]. In this case, the function f(x;a) is linear in the
model vector x, and can be written as a∗x. Nevertheless,
there are far less results for nonlinear regression. This is
due to the fact that linear regression amounts to a system
of linear equations with a cubic solution complexity if the
measurements are error-free, whereas nonlinear regression
is NP-hard and its complexity further increases with the
inclusion of premeditated errors. However, very special cases
of nonlinear regression have been extensively studied in the
literature. In particular, the robust phase retrieval problem
that can be formulated with f(x;ai) = |a∗ix|2 has received
considerable attention [9], [16], [17].

To model a general nonlinear regression problem, notice
that every smooth nonlinear function can be approximated
arbitrarily precisely with a polynomial function, and that
every polynomial function can be converted to a quadratic
function subject to quadratic equality constraints (playing the
role of error-free quadratic measurements) after introducing
specific auxiliary variables [18]. This implies that every non-
linear regression could be approximated up to any arbitrary
precision with a quadratic regression where the augmented
model of the system is quadratic. As a far more general case
of phase retrieval, a quadratic regression problem with the
variable x can be modeled as f(x;Ai) = x∗Aix. The state
estimation problem for power systems belongs to the above
model due to the quadratic laws of physics (i.e., the quadratic



relationship between voltage and power), where each matrix
Ai is rank 1 or 2. Robust regression in power systems is
referred to as bad data detection. This problem was first
studied in 1971 [19], and there are many recent progresses
on this topic [2], [20], [21]. It is worth to mention that there
are similar problems that arise in power system analysis,
like State Estimation which is robust to wrong topological
information [?]. However, we do not consider them in this
paper.

The existing approaches for robust regression include the
analysis of the unconstrained case [8], [11], [13], [15], the
constrained scenario with conditions on the sparsity of the
solution vector x [7], [12], [22], [23], and more sophisticated
scenarios in the context of matrix completion [6], [10], [24].
Motivated by applications in inverse covariance estimation
[25], the papers [23], [26], [27] consider sparse noise in the
input vector ai as opposed to the additive error considered
in this paper. The work [11] is based on l1-minimization,
whereas [7] solves an extended Lasso formulation defined as
the minimization of ‖y−Ax+ν‖22 +µ1‖x‖1 +µ2‖ν‖1. The
work [28] proposes to solve a second-order cone program-
ming (SOCP) for robust linear regression, which is related to
the current paper with a focus on robust nonlinear regression.
In contrast to the above-mentioned papers that aim to develop
a single optimization problem to estimate the solution of a
linear regression, there are iterative-based methods as well.
For instance, [8], [14], [15] propose iterative algorithms via
hard thresholding. This technique will be exploited in the
current paper as well.

Due to the diversity in the problem formulation and ap-
proaches taken by different papers, it is difficult to compare
the existing results since there is no single dominant method.
However, the most common measures of performance for
robust regression algorithms are the traditional algorithmic
complexity and the permissible number of gross measure-
ments ‖η‖0 compared to the total number of measurements
m. In this paper, the objective is to design a polynomial-
time algorithm, in contrast with potentially exponential-time
approaches [29]. As far as the robustness of an algorithm
is concerned, the existing works often provide probabilistic
guarantees on the recoverability of the original parameter
vector x for linear Gaussian stochastic systems under various
assumptions on the relationship between ‖η‖0 and m. In this
case, the ratio ‖η‖0m , named breakdown point, is limited by a
constant and could even approach 1 if the unknown solution
x is sparse.

A. Contributions and Organization

The main objective of this paper is to analyze a robust
regression problem for an arbitrary quadratic model that
includes power system state estimation and phase retrieval as
special cases. The focus is on the calculation of the maximum
number of bad measurements that does not compromise the
exact reconstruction of the model vector x. In Section II,
we formally state the problem. In Section III, we offer
the main results of this paper. First, a penalized conic
relaxation is proposed and its performance is analyzed via

deterministic bounds. For Gaussian systems, the results are
refined and it is shown that the proposed algorithm tolerates
up to a square root of the total number of measurements to
be arbitrarily wrong without creating any nonzero estima-
tion error. Second, a more computationally-complex method
based on iterative conic optimization and hard thresholding
is proposed to solve the robust regression problem. In the
Gaussian case with a high number of measurements, it is
proved that this method allows up to a constant number
of equations to be grossly wrong. Numerical results are
presented in Section IV, which includes a case study on
a European power grid. Concluding remarks are drawn in
Section V, followed by the proofs in the appendix.

B. Notation

Rn and Cn denote the sets of real and complex n-
dimensional vectors, respectively. Hn and Sn are the sets
of n × n Hermitian and symmetric matrices. tr(A) and
〈A,B〉 denote the trace of a matrix A and the Frobenius
inner product of two matrices A and B. The conjugate
transpose of A is shown as A∗. The notation A ◦B refers
to the Hadamard (entrywise) multiplication. The eigenvalues
of a matrix M ∈ Hn are denoted as λ1(M), ..., λn(M) in
descending order, from which three parameters are defined
as λmax(M) = λ1(M), λmin(M) = λn(M) and κ(M) =
λn−1(M) + λn(M). Given a matrix A ∈ Cn×m and a set
S ⊂ {1, . . . ,m}, the matrix AS is defined to be a submatrix
of A obtained by selecting those columns of A with indexes
in S. The smallest and largest singular values of A are shown
as σmin and σmax, respectively. The symbol ‖v‖0 shows the
cardinality of a vector v, i.e., the number of its nonzero
elements. Given a matrix A, the symbols ‖A‖1, ‖A‖∞,
‖A‖2, and ‖A‖F denote the maximum absolute column
sum, maximum absolute row sum, maximum singular value,
and the Frobenius norm of A, respectively. The cardinality of
a set M is indicated as |M|. The operator vec(·) vectorizes
its matrix argument.

II. PROBLEM FORMULATION

The Robust Quadratic Regression aims to find a vector
x ∈ Dn such that

yr = x∗Mrx + ηr, ∀r ∈ {1, . . . ,m}, (1)

where
• D is either R or C
• y1, . . . , ym are some known real-valued measurements.
• η1, . . . , ηm are unknown and sparsely occurring real-

valued noise with arbitrary magnitudes.
• M1, . . .Mm are some known n×n Hermitian matrices.

The regression problem could have two solutions ±x in
the real-valued case, which increases to infinitely many in
the form of x × e

√
−1θ in the complex case. To avoid this

ambiguity, the objective is to find the matrix xx∗ rather
than x since this matrix is invariant if x rotates. At the
same time, recovery of x from xx∗ is a simple problem
that can be solved with spectral decomposition. If m is large
enough, then xx∗ is unique. This paper aims to recover any



solution xx∗ in case there are multiple ones. To develop
the theoretical results of this paper, it is essential to ensure
that the matrices M1, . . .Mm are somehow comparable. To
achieve this, one may appropriately rescale each individual
measurement equation to make the norm of the resulting
constant matrix equal to 1. Therefore, with no loss of gener-
ality, assume that ‖Mr‖2 = 1 for r = 1, ...,m. In the robust
regression problem, the vector η is assumed to be sparse. To
distinguish between error-free and erroneous measurements,
we introduce a partition of the set of measurements into two
subsets of good and bad measurements:

G = {r|ηr = 0}, B = {1, . . . ,m}\G

To streamline the derivation of the analytical results of
this paper, we assume that G = {1, . . . , |G|} and B =
{|G| + 1, . . . ,m}. However, the algorithms to be designed
are completely oblivious to the type of each measurement
and its membership in either G or B. Define the function
F : Cn → Cm as follows:

F(z) = [z∗M1z . . . z∗Mmz]T ,

Define also the Jacobian of the above function at a point x
with respect to the coordinates of good measurements

∇GF(z)
∣∣
z=x

= JG = 2
[
M1x . . . M|G|x

]
(2)

and with respect to the coordinates of bad measurements

∇BF(z)
∣∣
z=x

= JB = 2
[
M|G|+1x . . . Mmx

]
(3)

Likewise, let J be the Jacobian of F(x). The objective of this
paper is to develop efficient algorithms to find x precisely
as long as η is sufficiently sparse. This statement will be
formalized in the next section.

III. MAIN RESULTS

Consider a variable matrix W playing the role of xx∗.
This matrix is positive semidefinite and has rank 1. By drop-
ping the rank constraint, we can cast the quadratic regression
problem as a linear matrix regression problem. Motivated by
this relaxation, consider the optimization problem

minimize
W∈Dn×n, ν∈Rn,

ω∈Rn

〈W,M〉+ µ1‖ν‖1 + µ2

2 ‖ω‖2

s.t. 〈W,Mr〉+ νr = yr + µ2ωr, ∀r ∈ {1, . . . ,m}
W = W∗ �C 0
‖ν‖0 ≤ k

(4)
where (M, µ1, µ2, k) is the set of hyperparameters of the
problem and the notation �C is the generalized inequality
sign with respect to C, which is either the cone of Hermitian
positive semidefinite (PSD) matrices or the second-order
(SO) cone defined as the set of all Hermitian matrices that
satisfy: [

Wii Wij

Wji Wjj

]
� 0, ∀(i,j)∈{1, . . . , n}. (5)

In what follows, we will analyze this problem for special
values of the hyperparameters and different numbers of
measurements.

A.i. Penalized Conic Relaxation

Suppose that x̂ ∈ Dn is an initial guess for the solution
of the quadratic regression, serving as a priori information
about the unknown vector x. Consider a Hermitian positive-
semidefinite matrix M ∈ Dn×n with the following proper-
ties:

Mx̂ = 0,

λ1(M) = · · · = λn−1(M) = 1

There are infinitely many choices for M. It results from this
definition that ‖Mx‖∞ is a measure of the alignment of the
initial guess x̂ and the exact solution x. Hence, define the
function

ρ(x̂,x) := ‖Mx‖∞

which serves as a distance between x and x̂ and represents a
priori knowledge about the solution of the problem. Its value
will be important in the following theoretical constructions.

In the special case (µ1, µ2, k) = (µ, 0,m), we obtain a
penalized conic programming relaxation of the problem (1):

minimize
W∈Dn×n, ν∈Rm

〈W,M〉+ µ‖ν‖1

s.t. 〈W,Mr〉+ νr = yr, ∀r ∈ {1 . . .m}
W = W∗ �C 0

(6)

Note that since no rank constraint is imposed on W and that
a regularization term is included in the objective function. We
refer to this problem as penalized conic relaxation. This is
a convex problem and can be solved in polynomial time up
to any given accuracy.

A.ii. Upper Bound on Cardinality of Bad Measurement Set

In this subsection, we establish a uniform bound on
the number of bad measurements that the penalized conic
relaxation can tolerate. To do so, we make use of two matrix
properties defined in [15].

Definition 1 (SSC property): A matrix X ∈ Cn×m is said
to satisfy the Subset Strong Convexity Property at level p
with constant λp if

λp ≤ min
|S|=p

√
λmin(XSXT

S )

Definition 2 (SSS property): A matrix X ∈ Cn×m is said
to satisfy the Subset Strong Smoothness Property at level p
with constant Λp if

max
|S|=p

√
λmax(XSXT

S ) ≤ Λp

The relationship between the constants λp and Λm−p can
be interpreted as a uniform condition number at level p. By
leveraging the properties of these constants, the first main
result of this paper aims to find a bound on the permissible
number of bad measurements.

Theorem 1: Assume that there exists a number µ∗ such
that
• Condition 1.1: 1−

√
n|B|Λ|B|λ|G|

> 0



• Condition 1.2:
(

λ|G|
4ρ(x̂,x)

√
n
−
√
n|G|

)
·

1−
√
n|B|

Λ|B|
λ|G|

1+
√
n|G|

Λ|B|
λ|G|

>

|B|
• Condition 1.3: µ∗ > 2ρ(x̂,x)

√
n

λ|G|−
√
n|B|ΛB

• Condition 1.4: µ∗ < λ|G|−4nρ(x̂,x)
√
|G|

2|B|
(√

n|G|ΛB+λ|G|

)
Then, (W, ν) = (xx∗, η) is the unique solution of the
penalized conic relaxation (6) with C chosen as the PSD
cone and µ = µ∗.

Proof: The proof is provided in the Appendix.
Theorem 1 states that the nonconvex robust regression

problem can be solved precisely, leading to the recovery of
the unknown solution and the detection of bad measurements,
provided that certain conditions are satisfied. These condi-
tions depend on the notions of SSC and SSS.

Lemma 1: As long as Conditions 1.1 and 1.2 in Theo-
rem 1 are satisfied, there exists a number µ∗ for which all
conditions of this theorem are met.

Proof: µ∗ must belong to the interval 2ρ(x̂,x)
√
n

λ|G| −
√
n|B|ΛB

,
λ|G| − 4nρ(x̂,x)

√
|G|

2|B|
(√

n|G|ΛB + λ|G|

)


It is straightforward to verify that the interval is not empty
if Conditions 1.1 and 1.2 in Theorem 1 are met.

Condition 1.1 ensures that a term in Condition 1.2 is non-
negative. On the other hand, Lemma 1 states that Condition
1.2 is the most important requirement for the success of the
penalized conic relaxation in solving quadratic regression.
We want to emphasize here that the precise knowledge of
the regularization parameter µ∗ seems to be not necessary
in practice. It will be shown in the Experiments section (IV)
that the heuristically chosen value of 10−2 may work quite
well.

To refine the result of Theorem 1, we will study the special
case of Gaussian systems next.

A.iii. Upper Bound for Gaussian Systems

Without loss of generality, assume throughout this subsec-
tion that D = R.

Definition 3: The matrix J is called standard Gaussian
over R if its entries are independent and identically dis-
tributed random variables with a standard normal distribu-
tion.

Theorem 2: Assume that J is standard Gaussian over R
and that there exist numbers ∆ > 0, µ∗, c = 24e2 log 3

ε and
c′ = 24e2 such that

• Condition 2.1:
√
cn+c′ log 2

δ

(1−2ε)
√
|B|

< ∆

• Condition 2.2: α = 8ρ(x̂,x)n
√

1+∆

1−∆−4ρ(x̂,x)n
√

1−∆
> 0

• Condition 2.3:
√
|G| > α|B| 32 +

√
n 1+∆

1−∆ |B|
• Condition 2.4: µ∗ > 2ρ(x̂,x)

√
n√

(1−∆)|G|−
√
n(1+∆)|B|

• Condition 2.5: µ∗ <
√

(1−∆)|G|−4nρ(x̂,x)
√
|G|

2|B|
√
|G|

(√
n(1+∆)|B|+

√
(1−∆)

) ,

Then, with probability at least (1− δ)2, the point (W, ν) =
(xx∗, η) is the unique solution of the penalized conic relax-
ation (6) with C equal to the SDP cone and µ = µ∗.

Proof: The proof is provided in the Appendix.
Every individual good measurement may be treated as

a bad measurement where its corresponding ηi approaches
zero. Using this subtle technique, the set of bad mea-
surements could be expanded from its original (true) set.
Condition 2.1 of Theorem 2 requires the (expanded) set
|B| to be sufficiently large, which implies that the total
number of measurements should be high. This theorem is
most effective when m ≥ n2. As a consequence of the strict
law of large numbers, the minimal and maximal singular
values of a standard Gaussian matrix are concentrated around
the square root of its width (number of columns). Using
this observation, it can be inferred from Theorem 2 that if
J is a standard Gaussian matrix, then the penalized conic
relaxation (6) with a PSD cone recovers the exact solution of
the quadratic regression with a high probability in the regime
where the number of measurements is sufficiently large,
provided that (i) |B| = O(|G| 13 ), or (ii) |B| = O(|G| 12 ) and
ρ(x̂,x) ∼ 0. These two asymptotic bounds are obtained from
Condition 2.3 because the other conditions of the theorem
do not matter if the number of measurements is sufficiently
large.

B. Robust Least-Squares Regression
Consider the optimization problem (4) with the parameter

set (M, µ1, µ2, k) = (0, 0, 1, k), which reduces to

minimize
W∈Dn×n, ν∈Rn

1

2

m∑
r=1

(〈W,Mr〉+ νr − yr)2

subject to W �C 0

‖ν‖0 ≤ k

(7)

This problem is nonconvex due to a cardinality constraint.
With no loss of generality, assume that D = R and that
k ≤ m.

Definition 4: Define HTk(y) : Rm → Rm to be a hard
thresholding operator such that

[HTk(z)]i =

 zi,
if |zi| is among the k largest
entries of z in magnitude

0, otherwise
for every z ∈ Rn, where [HTk(z)]i denotes the ith entry of
[HTk(z)].

Consider the function

f(ν) := min
W�C0

1

2

m∑
r=1

(〈W,Mr〉 − (yr − νr))2

and let Ŵ(ν) denote a solution to this problem. The
Hard Thresholding approach to be proposed for solving the
quadratic regression problem consists of the iterative scheme

νt+1 = HTk(νt − d(νt)) (8)

where

d(ν) =
1

2
∇ν

(
m∑
r=1

(〈W,Mr〉 − (yr − νr))2

)∣∣∣∣
W=Ŵ(ν)



(the symbol ∇ν denotes the gradient with respect to ν).
By Lemma 3.3.1 in [30], if Ŵ(ν) is a continuously dif-
ferentiable mapping, then ∇f(ν) = d(ν). Inspired by this
fact, one may informally regard d(ν) as the gradient of
the objective of the optimization problem (7) without its
cardinality constraint and after fixing its variable ν. Define
w = vec(W), ŵ(ν) = vec(Ŵ(ν)), ar = vec(Mr) for
r = 1, ...,m, and A = [a1 . . . am]T . It can be verified
that

d(ν) = Aŵ(ν)− y + ν

which implies that

HTk(ν − d(ν)) = HTk(y −A · vec(Ŵ(ν)))

Based on this formula, we propose a conic hard thresholding
method in Algorithm 1.

Algorithm 1 Conic Hard Thresholding
Input: Covariates A, responses y, corruption index k, tol-

erance ε, and cone C
Initialization :

1: ν0 ← 0, t← 0;
LOOP Process

2: while ‖νt − νt−1‖ > ε do
3: Ŵt = arg min

W�C0

m∑
r=1

(〈W,Mr〉 − (yr − νtr))
2

;

4: νt+1 = HTk(y −A · vec(Ŵt));
5: t← t+ 1;
6: end while
7: return Ŵt+1

Unlike the penalized conic relaxation, Algorithm 1 solves
a sequence of conic programs to identify the set of bad mea-
surements through a thresholding technique. In the regime
where m ≥ n2, this algorithm with a high computational
complexity can be further relaxed by letting the cone C
to be the set of symmetric matrices. We refer to this as
Algorithm 2, where the condition W �C 0 is reduced
to W = W∗. Note that Algorithm 2 is not effective if
m < n(n + 1)/2 because the number of measurements
becomes less than the number of scalar variables in W.
On the other hand, as m grows, the feasibility constraint
W �C 0 becomes almost redundant and Algorithm 1
performs similarly to Algorithm 2. Inspired by this property,
we analyze the asymptotic behavior of Algorithm 2 for
Gaussian systems below.

Theorem 3: Suppose that |B| < m
20000 , m ≥ n2, Mr

is a random normal Gaussian matrix for r = 1, ...,m,
and there is Gaussian additive noise with variance σ2. For
every ε, δ > 0, Algorithm 2 recovers a matrix W such that
‖W−xxT ‖2 ≤ ε+O(σ

√
n
m log nm

δ ) within O(log(‖η‖2ε )+
log( 2m

n2+n )) operations with probability 1− δ.
For every ε > 0, Algorithm 2 recovers a matrix W such

that ‖W − xx∗‖2 ≤ ε within O(log(‖η‖2ε ) + log( 2m
n2+n ))

operations.
Proof: The proof is provided in the Appendix.

Let W be a solution found by Algorithm 2. Then, one
can use its eigenvalue decomposition to find a vector u such
that u = arg min

v∈Cn
‖vv∗ −W‖2. Therefore,

‖uu∗ − xx∗‖2 = ‖(uu∗ −W)− (xx∗ −W)‖2
≤ ‖uu∗ −W‖2 + ‖xx∗ −W‖2 ≤ 2ε

(9)

This means that Algorithm 2 can be used to find an ap-
proximate solution u with any arbitrary precision for the
robust regression problem for Gaussian systems with a
large number of measurements and yet it allows up to a
constant fraction of measurements to be completely wrong
(i.e., O(|B|) = O(|G|)). Comparing this with the guarantee
O(|B|) = O(|G| 13 ) for the penalized conic optimization, it
can be concluded that Algorithm 1 (or 2) is more robust to
outliers than the penalized conic program since it solves a
sequence of optimization problems iteratively as opposed to
a single one. This leads to a tradeoff between the complexity
of an estimation method and its robustness level.

The theoretical analyses of this work were all on a
regression model subject to a sparse error vector. However,
the results can be slightly modified to account for modest
noise values in addition to sparse errors. The bounds derived
in this work remain the same, but the solutions found by the
penalized conic relaxation and Algorithm 1 would no longer
match the true regression solution being sought (as expected,
due to a corruption in all equations). The mismatch error is a
function of the modest noise values. The details are omitted
for brevity; however, the result will later be demonstrated in
numerical examples.

IV. EXPERIMENTS

In this section, we study the numerical properties of the
penalized conic relaxation (6) and the conic hard threshold-
ing Algorithm 1.

A. Synthetic Data

Following [31], we define the sparsity pattern of an
arbitrary matrix X ∈ Hn as a binary matrix N ∈ Sn whose
(i, j)-entry is equal to 1 if and only if Xij 6= 0. Define the
set

S(N) , {X ∈ Hn|X ◦N = X}

. We conduct experiments on synthetically generated
quadratic regression datasets with corruptions. The true
model vector x is chosen to be a random unit norm vec-
tor, while the input matrices Mr’s are chosen from S(N)
according to a common random sparsity pattern N. The
nonzero entries of Mr’s are generated from normal standard
distribution. The matrix N is formed by including all diago-
nal elements and 3n off-diagonal elements. The off-diagonal
positions are picked uniformly. The responses to be corrupted
are chosen uniformly at random and the value of each
corruption is generated uniformly from the interval [10, 20].
Responses are then generated as yr = x∗Mrx + ηr + ωr,
where in addition to the sparse error vector η we have a
random dense noise vector ω whose entries are Gaussian with
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Fig. 2. Estimation error as a function of the number of bad measurements k for different magnitudes of additive dense Gaussian noise.

zero mean and variance σ. All reported results are averaged
over 10 random trials.

By assuming that no prior information about the solution
x is available, we set the matrix M to be equal to In in the
penalized conic relaxation with the parameter µ chosen as
10−2. Regarding Algorithm 1, the parameter k is selected as
the true number of corrupted measurements, the tolerance
ε is set to 10−3, and the algorithm is terminated early
if the number of conic iterations exceeds 50. In both of
the methods, C is considered to be the SO cone. Hence,
we refer to these methods as penalized SOCP and SOCP
hard thresholding. Due to the sparsity in the data, the
SOCP formulation can be simplified by only imposing those
2 × 2 constraints in (5) that correspond to the members of
{(i, j) | Nij = 1}.

We measure the performance of each algorithm using the
root mean squared error (RMSE) defined as ‖x̂−x‖2√

n
. Figure 1

shows the RSME in three different plots as a function of
the number of data points m, the dimensionality n, and the
additive white noise variance σ. Figure 2 depicts the RSME
as a function of the number of bad measurements k for
different magnitudes of additive dense Gaussian noise. It can
be observed that both the penalized conic relaxation and the
conic hard thresholding algorithm exhibit an exact recovery
property for systems with up to 700 randomly corrupted
measurements out of 2500 measurements in the absence of
dense Gaussian noise. The same behavior is observed in the
presence of dense Gaussian noise of different magnitudes:
the error of the penalized SOCP solution grows gradually,
while the error of the the hard thresholding algorithm has
a jump at around 800 bad measurements. These simulations
support the statement that up to a constant fraction of mea-
surements could be completely wrong, and yet the unknown

regression solution is found precisely.
Although the theoretical analyses provided in this paper

favor Algorithm 1 over the penalized conic relaxation, our
empirical analysis shows that the penalized SOCP method
has a better performance than the hard thresholding algorithm
uniformly in the number of measurements, dimensionality,
noise magnitude and the number of outliers. To explain
this observation, note that the derived theoretical bounds
correspond to the worst-case scenario and are more conserva-
tive for an average scenario. Moreover, the implementation
of Algorithm 1 in this section has limited the number of
iterations to 50, while Theorem 3 requires the number of
iterations to grow with respect to the amount of corruption.

The results of this part are produced using the standard
MOSEK v7. SOCP-solving procedure, run in MATLAB on
a 12-core 2.2GHz machine with 256GB RAM. The CPU
time for each round of solving SOCP ranges from 3s (for
n = 250, m = 2500) to 30s (for n = 400, m = 2500).

B. State Estimation for Power Systems

In this subsection, we present empirical results for the
penalized conic relaxation with a PSD cone C tested on the
real data for the power flow state estimation with outliers.
As discussed in [2], this problem can be formulated as
robust quadratic regression. The experiment is run on the
PEGASE 1354-bus European system borrowed from the
MATPOWER package [32], [33]. This system has 1354
nodes and the objective is to estimate the nodal voltages
based on voltage magnitude and power measurements of the
form yr = x∗Mrx + ηr + ωr, where ω is a dense additive
noise whose rth entry is Gaussian with mean zero and the
standard deviation equal to σ times the true value of the
corresponding voltage/power parameter. The dimension of
the complex vector x is 1354, which leads to 2708 real



variables in the problem. In this model, the measurements are
voltage magnitude squares, active and reactive nodal power
injections, and active and reactive power flows from both
sides of every line of the power system. This amounts to
3n + 4l = 12026 measurements, where l = 1991 denotes
the number of lines in the system. Note that the quadratic
regression problem is complex-valued in this case.

The penalty parameter µ of the penalized conic relaxation
is set to 102 and the matrix M is chosen as −Y + γI,
where Y is the susceptance matrix of the system and γ is the
smallest positive number that makes M positive semidefinite.
Since the penalized SDP relaxation is large-scale, we employ
a tree decomposition technique to leverage the sparsity of the
problem to solve it more efficiently [34]. The width of the
tree decomposition used to reduce the complexity is equal to
12. We do not report any results on Algorithm 1 because it
requires solving large-scale SDPs successively and this could
be time-consuming. Moreover, the number of measurements
is not high enough to use Algorithm 2, so we can’t use it
too.

The numerical results are reported in Figure 3. Remark-
ably, if the dense Gaussian noise is non-existent, the conic
relaxation recovers the solution precisely as long as the
number of bad measurements is less than 150 (note that√
m ' 109). Note that power systems are sparse and their

models are far from Gaussian, but the results of Theorem 2
are still valid in this numerical example.
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Fig. 3. This plot shows the RMSE with respect to the number of
corrupted measurements k for the PEGASE 1354-bus system.

V. CONCLUSION

This paper is concerned with the robust quadratic re-
gression problem, where the goal is to find the unknown
parameters (state) of the system modeled by nonconvex
quadratic equations based on observational data subject to
sparse errors of arbitrary magnitudes. Two methods are
developed in this paper, which rely on conic optimization.
The first approach is a single optimization problem that
includes a regularizer term in the objective function to cope
with the sparse noise, whereas the second method is an
iterative algorithm that requires solving a conic optimization
at every iteration and performing a hard thresholding task.
A deterministic bound is derived for the first method, named
penalized conic relaxation, which quantifies how many bad
measurement the algorithm can tolerate and yet recover the

correct solution. This bound is further refined for Gaussian
systems, and it is shown that up to a square root of the
total number of measurements could be grossly erroneous
without compromising the quality of the recovered solution.
In the case where the number of measurements is sufficiently
large, it is shown that the second algorithm allows up to
a constant number of equations to be arbitrarily wrong for
Gaussian systems. The results of this paper are demonstrated
on synthetic data. In addition, a case study is provided on a
European power grid to verify that the proposed technique
can correctly identify the state of the system even if O(

√
m)

measurements are completely wrong.
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APPENDIX

Lemma 2: Consider a full row-rank matrix A ∈ Cn×m
and its Moore-Penrose pseudoinverse A+ ∈ Cm×n. The
following inequalities hold:

‖A‖∞ ≤
√
mσmax(A), ‖A+‖∞ ≤

√
n

1

σmin(A)
,

‖A‖1 ≤
√
nσmax(A), ‖A+‖1 ≤

√
m

1

σmin(A)

Proof: Using the singular value decomposition, the
matrix A can be written as

A = U [Σ 0]

[
V∗1
V∗2

]
and therefore,

A+ = [V1 V2]

[
Σ−1

0

]
U∗

Consider the following inequalities:

‖A‖∞ ≤
√
m‖A‖2, ‖A‖1 ≤

√
n‖A‖2

‖A+‖∞ ≤
√
n‖A+‖2, ‖A+‖1 ≤

√
m‖A+‖2

(10)

(please refer to Section 2.3 in [35] for more details). Now,
one can use the fact that unitary transformations preserve the
2-norm:
‖A‖2 = ‖UΣV∗1‖2 = ‖Σ‖2 = σmax(A)

‖A+‖2 = ‖V1Σ−1U∗‖2 = ‖Σ−1‖2 =
1

σmin(A)

(11)

The proof follows from the above equations.

Lemma 3: If the conditions
i) 1−

√
n|B|σmax(JB)

σmin(JG) > 0

ii) µ∗ > 2ρ(x̂,x)
√
n

σmin(JG)−
√
n|B|σmax(JB)

iii) µ∗ <
σmin(JG)−4nρ(x̂,x)

√
|G|

2|B|
(√

n|G|σmax(JB)+σmin(JG)
)

iv) |B| <
(
σmin(JG)

4ρ(x̂,x)
√
n
−
√
n|G|

)
·

1−
√
n|B|σmax(JB)

σmin(JG)

1+
√
n|G|σmax(JB)

σmin(JG)

are satisfied, then (W, ν) = (xx∗, η) is the unique solution
of the penalized conic relaxation (6) with C equal to the PSD
cone and µ = µ∗.

Proof: It follows from [2] that (W, ν) = (xx∗, η) is the
unique solution of the penalized conic relaxation (6) based on
a dual certificate if the followings conditions are all satisfied:

1− ‖J+
G JB‖∞ > 0 (12a)

µ >
2‖J+
GMx‖∞

1− ‖J+
G JB‖∞

(12b)

µ <
1− 4‖J+

GMx‖1
2
(
‖J+
G JB‖1 + 1

)
|B|

(12c)

|B| <
1− 4‖J+

GMx‖1
‖J+
G JB‖1 + 1

·
1− ‖J+

G JB‖∞
4‖J+
GMx‖∞

(12d)

Using the inequality ‖AB‖ ≤ ‖A‖‖B‖, Lemma 2, and
certain algebraic transformations, the above conditions could
be relaxed to those stated in this lemma.

Proof of Theorem 1: The proof follows directly from
Lemma 3 and the notions of SSC and SSS introduced in
Definitions 1 and 2. �

Proof of Theorem 2: In light of Lemma 14 in [8], any
randomly sampled Gaussian matrix X ∈ Rn×m satisfies the
inequalities

λmax(XXT ) ≤ m+ (1− 2ε)−1
√
cmn+ c′m log 2

δ

λmin(XXT ) ≥ m− (1− 2ε)−1
√
cmn+ c′m log 2

δ

with probability at least 1 − δ for every ε > 0, where c =
24e2 log 3

ε and c′ = 24e2. This implies that the relations

σmin(JG) ∈ [
√
|G|(1−∆),

√
|G|(1 + ∆)]

and
σmax(JB) ∈ [

√
|B|(1−∆),

√
|B|(1 + ∆)]



are each satisfied with the probability 1 − δ, and both are
met simultaneously with probability at least (1 − δ)2. As a
result, Conditions (i), (iii) and (iv) in Lemma 3 hold with
high probability. To analyze Condition (ii), one can write:(

σmin(JG)

4ρ(x̂,x)
√
n
−
√
n|G|

)
·

1−
√
n|B|σmax(JB)

σmin(JG)

1 +
√
n|G|σmax(JB)

σmin(JG)

≥

(√
|G|(1−∆)

4ρ(x̂,x)
√
n
−
√
n|G|

)
·

1−
√
n 1+∆

1−∆
|B|√
|G|

1 +
√
n|B| 1+∆

1−∆

≥

√
|G|

(
(1−∆)

4ρ(x̂,x)n
√

1 + ∆
−
√

1−∆

1 + ∆

)
·

1−
√
n 1+∆

1−∆
|B|√
|G|

2
√
|B|

Since √
|G|

(
1−

√
n

1 + ∆

1−∆

|B|√
|G|

)
> α|B| 32 ,

Condition (ii) also holds true, and then the proof follows
from Lemma 3. �

Proof of Theorem 3: Define

w̃ = UPvec(W)

ã = UPvec(M)

ãr = UPvec(Mr), r = 1, ...,m

Ã = [ã1 . . . ãm]T

(13)

Where UPvec(·) is an operator that returns a vector com-
posed of the components of the upper triangle (including
diagonal) of its matrix argument. The dimension of the
resulting vector is n2+n

2 . In light of (1), the unknown vector
w = UPvec(xx∗) satisfies the linear regression problem

y = Aw + η (14)

Moreover, ar is a random vector with a Gaussian probability
distribution for every r ∈ {1, ...,m}. It follows from [15]
that Algorithm 2 recovers w correctly. This implies that the
matrix xx∗ is found using this algorithm. �


	Introduction
	Contributions and Organization
	Notation

	Problem Formulation
	Main Results
	Experiments
	Synthetic Data
	State Estimation for Power Systems

	Conclusion
	References

